(d) 9.8 amu

Which one of the following solutions contains more

(d) 0.25 M V

(b) 1 M

(c) 9.8 g

water:

(a) 2 M

(c) 0.5 M

6-

TIPS	Solved Up-to-Date Model Papers	60	A dela del	MISTRY 9TH
7-	Which one of the	e following r	nolecule	is not tri-
	atomic:			
	(a) H ₂ V	(b) O ₃		
	(c) H ₂ O	(d) CO ₂		
8-	Which one of the following is not amorphous solid:			
	(a) Rubber	(b) Plastic		
	(c) Glass	(d) Glucose	1	
9-	Which one of the	following h	alogens l	nas lowest
	electro-negativity:			
	(a) Fluorine	(b) Chlorine		
	(c) Bromine	(d) lodine v	1	
10-	Which one of the subshells:	following sh	ell consis	ts of three
	(a) O shell	(b) N shell		
	(c) L shell	(d) M shell	1	
11-	Which one of the HCI:	following will	not react	with dilute
	(a) Sodium	(b) Potassiu	ım	
	(c) Calcium	(d) Carbon		
12-	Transition elements are:			
	(a) All gases	(b) All meta	Is v	
	(c) All non-metals	(d) All meta		

(Part-I)

(Subjective Type)

Paper-I

Marks: 48

Q.2. Write short answers to any Five (5) questions: 10

Write two applications of nuclear chemistry.

Two applications of nuclear chemistry are:

Medical Treatment (Radiotherapy)

Preservation of Food

Time: 1.45 Hours

Define free radicals. Give two examples also. (ii)

Free radicals are atoms or group odd number of (unpaired) electrons. possessing represented by putting a dot over the symbol of an

element, e.g., H', Cl', H3C'.

Who discovered an electron and proton? (iii)

J.J. Thomson discovered electrons while Goldstein discovered protons.

What is maximum capacity of a shell? (iv)

The maximum capacity of a shell to accommodate the electrons is as follows:

(i) K shell can accommodate 2 electrons.

(ii) L shell can accommodate 8 electrons.

(iii) M shell can accommodate 18 electrons.

(iv) N shell can accommodate 32 electrons.

What are the defects of Rutherford's atomic model? (V)

It had following defects:

According to classical theory, electrons being the charged particles should release or emit energy continuously and they should ultimately fall into the nucleus.

CHEMISTRY 9TH

TIPS Solved Up-to-Date Model Papers 62 If the electrons emit energy continuously, they should

form a continuous spectrum but, in fact, line spectrum was observed.

Define atomic radius. Give an example also.

The half of the distance between the nuclei of the two bonded atoms is referred as the atomic radius of the atom. For example, the distance between the nuclei of two carbon atoms in its elemental form is 154 pm, it means its half 77 pm is radius of carbon atom.

(vii) Why the elements are called s and p block elements? Elements of group 1 and 2 have valence electrons in 's' subshell. Therefore, they are referred as s-block

elements. Elements of group 13 to 18 have their valence electrons in 'p' subshell. Therefore, they referred as pblock elements.

(viii) What do you mean by groups and periods in the periodic table?

The horizontal rows of elements in the periodic table are called periods. While the vertical columns in the periodic table are called groups.

Q.3. Write short answers to any FIVE (5) questions: 10

Why are noble gases not reactive?

Ans The noble gases have 2 or 8 electrons in their valence shells. It means all the noble gases have their valence shells completely filled. Their atoms do not have vacant space in their valence shell to accommodate extra electrons. Therefore, noble gases do not gain, lose or share electrons. That is why they are non-reactive.

Why do atoms react?

Ans Every atom has a natural tendency to have 2 or 8 electrons in its valence shell so that they can be stable. Atoms react with each other to fulfil this quantity of

Why a covalent bond becomes polar?

If the covalent bond is formed between two different types of atoms (hetro-atoms), then the bond pair of electrons will not be attracted equally by the bonded atoms. One of the atoms will attract the bond pair of electrons more strongly than the other one. This atom (element) will be called as more electronegative.

When there is difference of electro-negativity between two covalently bonded atoms, there will be unequal attraction for the bond pair of electrons between such atoms. It will result in the formation of polar covalent

bond.

Define hydrogen bonding.

(iv) Partially positively hydrogen of one molecule attracts and forms a bond with the partially negatively charged atom of the other molecule, the bonding is called hydrogen bonding.

(v) What is meant by diffusion of gases?

Ans Diffusion is defined as spontaneous mixing up of molecules by random motion and collision to form a homogeneous mixture. Diffusion depends upon the molecular mass of gases. Lighter gases diffuse more rapidly than heavier ones.

(vi) State Charles law of gases.

French scientist J. Charles, in 1787, presented his law that states "the volume of a given mass of a gas is directly proportional to the absolute temperature if the pressure is kept constant."

Mathematically, it is represented as:

Volume ∞ Temperature

V oc T

V = kT

Define amorphous solids with examples.

Ans Amorphous solids:

etc. (viii) In which form sulphur exists at 100°C?

At 100°C, sulphur exists in the monoclinic form.

Q.4. Write short answers to any FIVE (5) questions: 10

(i) Define aqueous solution. Give one example.

The solution, which is formed by dissolving a substance in water is called aqueous solution. In aqueous solutions, water is always present in greater amount and termed as solvent. For example, sugar in water and table salt in water.

(ii) What is suspension?

Suspension is a heterogeneous mixture of undissolved particles in a given medium.

(iii) What is redox reaction? Give example.

Ans A chemical reaction in which the oxidation and reduction processes are involved is called oxidation-reduction or redox reaction. For example,

 $Zn_{(s)} + 2H^{+}_{(aq)} \longrightarrow Zn^{2}_{(aq)} + H_{2(g)}$

(iv) What are non-electrolytes? Give one example.

The substances, which do not ionize in their aqueous solutions and do not allow the current to pass through their solutions, are called non-electrolytes. For example, sugar solution and benzene are non-electrolytes. (v) Define galvanizing process.

Ans The process of coating a thin layer of zinc on iron is called galvanizing.

(vi) Write importance of non-metals.

Ans The importance of non-metals is as follows:

Non-metals are essential part of the body structure of all living things. Human body is made up of about 28

TIPS Solved Up-to-Date Model Papers 65 CHEMISTRY 9TH elements. But about 96% of the mass of the human

body is made up of just 4 elements i.e., oxygen 65%, carbon 18%, hydrogen 10% and nitrogen 3%. Similarly, plant bodies are made up of cellulose, which is composed of carbon, hydrogen and oxygen.

Life owes to non-metals as without O, and CO, (essential gases for respiration of animals and plants, respectively), life would not have been possible. In fact, these gases are essential for the existence of life.

Write two chemical properties of halogens.

(vii) Following are the two chemical properties of halogens:

Most of the halogens are non-metals. Thus they

usually do not react with water.

They do not react with dilute acids because nonmetals are itself electron acceptors.

Write two uses of gold. (viii)

Ans Uses of gold:

Because of its inertness in atmosphere, gold is an ornamental metal as well as used in making coins.

Gold is too soft to be used as such. It is always alloyed with copper, silver or some other metal.

(Part-II)

NOTE: Attempt any TWO (2) questions.

Q.5.(a) Write five branches of Chemistry.

Ans Following are five of the branches of Chemistry:

1. Physical Chemistry:

Physical Chemistry is defined as "the branch of chemistry that deals with the relationship between the composition and physical properties of matter along with the changes in them."

The properties such as structure of atoms or formation of molecules, behavior of gases, liquids and

TIPS Solved Up-to-Date Model Papers 66 solids and the study of the effect of temperature radiation on matter, all are studied under this branch.

2. Organic Chemistry: Organic Chemistry is the study of

compounds of carbon and hydrogen (hydrocarbons) and

their derivatives.

Organic compounds occur naturally and are also synthesized in the laboratories. Organic chemists determine the structure and properties of these naturally occurring as well as synthesized compounds. Scope of this branch covers petroleum, petrochemicals and pharmaceutical industries.

3. Inorganic Chemistry:

Inorganic chemistry "deals with the study of elements and their compounds except those compounds of carbon and hydrogen (hydrocarbons) and their derivatives."

It has applications in every aspect of the chemical industry such as glass, cement, ceramics and metallurgy (extraction of metals from ores).

4. Biochemistry:

It is "the branch of chemistry in which we study the structure, composition, and chemical reactions substances found in living organisms."

It covers all chemical processes taking place in living organisms, such as synthesis and metabolism biomolecules like carbohydrates, proteins and fats. Biochemistry emerged as a separate discipline when scientists began to study how living things obtain energy from food or how the fundamental biological changes occur during a disease. Examples of applications of biochemistry

are in the fields of medicine, food science, agriculture, etc. 5. Industrial Chemistry:

The "branch of chemistry that deals with manufacturing of chemical compounds on commercial scale, is called industrial chemistry."

between the volume and pressure of a gas at constant

temperature. He observed that volume of a given mass of a gas is inversely proportional to its pressure provided the temperature remains constant.

According to this law, the volume (V) of a given mass of a gas decreases with the increase of pressure (P) and

vice versa. Mathematically, it can be written as:

Volume
$$\infty \frac{1}{\text{Pressure}}$$
 or $V \propto \frac{1}{P}$

Or
$$V = \frac{k}{P}$$
 or $VP = k = constant$

where 'k' is proportionality constant and the value of k is same for the same amount of a given gas. Therefore, Boyle's law can be stated as

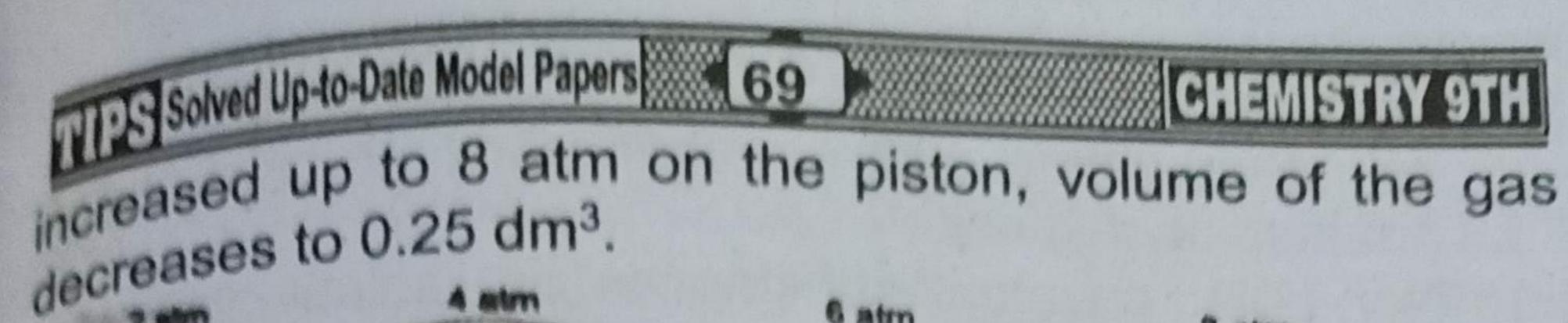
"The product of pressure and volume of a fixed mass

of a gas is constant at a constant temperature."

If
$$P_1V_1 = k$$
 Then $P_2V_2 = k$

where P_1 = initial pressure P_2 = final pressure

 V_1 = initial volume V_2 = final volume


As both equations have same constant, therefore, their variables are also equal to each other.

$$P_1V_1 = P_2V_2$$

This equation establishes the relationship between pressure and volume of the gas.

Experimental Verification of Boyle's law:

The relationship between volume and pressure can be verified experimentally by the following series of experiments. Let us take some mass of a gas in a cylinder having a movable piston and observe the effect of increase of pressure on its volume. The phenomenon is represented in the following figure. When the pressure of 2 atmosphere (atm) is applied, the volume of the gas reads as 1 dm³. When pressure is increased equivalent to 4 atm, the volume of the gas reduces to 0.5 dm³. Again when pressure is increased three times *i.e.*, 6 atm, the volume reduces to 0.33 dm³. Similarly, when pressure is

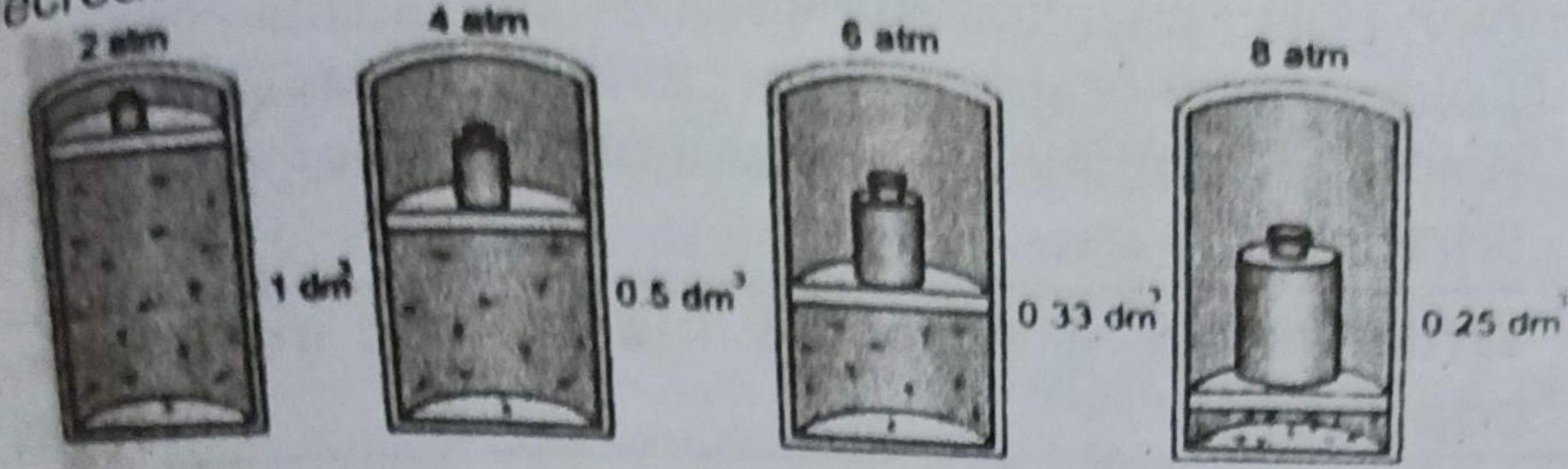


Fig. The decrease of value with increase of pressure.

When we calculate the product of volume and pressure for this experiment, the product of all these experiments is constant, i.e., 2 atm dm³. It proves the Boyle's law

 $P_1V_1 = 2 \text{ atm} \times 1 \text{ dm}^3 = 2 \text{ atm dm}^3$

 $P_2V_2 = 4 \text{ atm} \times 0.5 \text{ dm}^3 = 2 \text{ atm dm}^3$

 $P_3V_3 = 6 \text{ atm} \times 0.33 \text{ dm}^3 = 2 \text{ atm dm}^3$

 $P_{A}V_{A} = 8 \text{ atm} \times 0.25 \text{ dm}^{3} = 2 \text{ atm dm}^{3}$

Q.7.(a) What is solubility? Explain general principle of solubility. (5)

Ans Solubility:

Solubility is defined as "the number of grams of the solute dissolved in 100 g of a solvent to prepare a saturated solution at a particular temperature." The concentration of a saturated solution is referred to as solubility of the solute in a given solvent.

The general principle of solubility is (like dissolves

like):

(i) The ionic and polar substances are soluble in polar solvents. Ionic solids and polar covalent compounds are soluble in water e.g., KCl, Na₂CO₃, CuSO₄, sugar, and alcohol are all soluble in water.

(ii) Non-polar substances are not soluble in polar solvents. Non-polar covalent compounds are not

TVIPS Solved Up-to-Date Model Papers 70 soluble in water such as ether, benzene, and petrol are insoluble in water.

Non-polar covalent substances are soluble in nonpolar solvents (mostly organic solvents). Grease, (iii) paints, naphthalene are soluble in ether or carbon tetrachloride etc.

Write down a note on electrolytic refining of (b) copper.

Electrolytic refining of copper:

Impure copper is refined by electrolytic method in electrolytic cell. Impure copper acts as anode and a pure copper plate acts as a cathode as shown in the fig.:

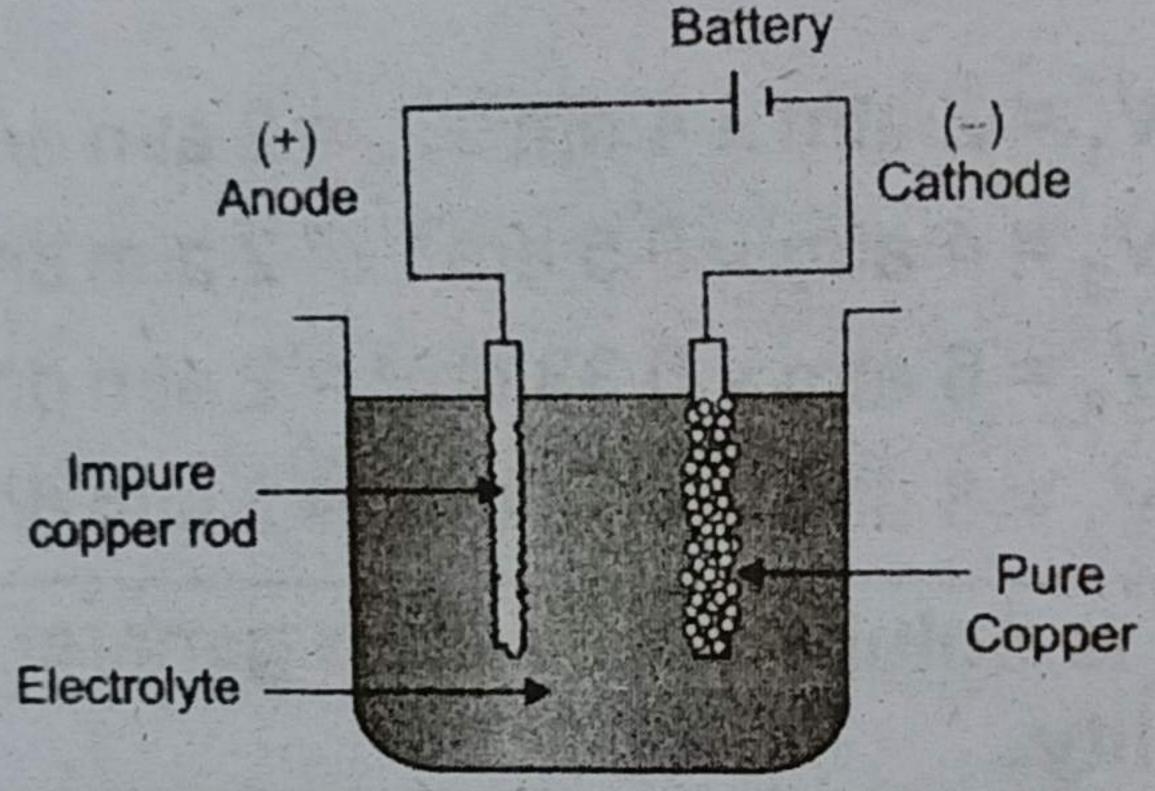


Fig. Refining of copper in an electrolytic cell.

Copper sulphate solution is used as an electrolyte. Oxidation reaction takes place at the anode. Copper atoms from impure copper lose electrons to the anode and dissolve in solution as copper ions.

$$Cu \longrightarrow Cu_{(aq)}^{+2} + 2e^{-}$$

Reduction reaction takes place at the cathode. The copper ions present in the solution are attracted to the cathode. They gain electrons from the cathode and become neutral and deposit on the cathode.

$$Cu_{(aq)}^{+2} + 2e^{-} \longrightarrow Cu_{(s)}$$
Tresult purified

As a result, purified copper atoms are deposited on the cathode.