	9th Class 2019	
Math (Science)	Group-I	Paper-I
Time: 20 Minutes	(Objective Type)	Max Marks: 15
Eaur Dose		nangare saissibles 15

A, B, C and D to each guestion are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

1-1- The square root of a2 - 2a + 1 is ----:

- (a) \pm (a + 1)
- (b) $\pm (a 1) \sqrt{ }$
- (c)(a-1)
- (d)(a+1)

A diagonal of a parallelogram divides it into --congruent triangles:

(a) 2 $\sqrt{}$

(b) 3

(c) 4

(d) 6

Two parallel lines intersect at --- point / points:

- (a) Three
- (b) Two

(c) One

(d) No 1/

The diagonals of parallelogram --- each other:

- (a) Bisect $\sqrt{}$ (b) Trisect
- (c) Bisect at right angle
- (d) Trisect at right angle

Order of transpose of matrix 0

- (a) $3 by 2 \sqrt{ }$
- (b) 2 by 3
- (c) 1 by 3 (d) 3 by 1

x = 0 is a solution of the inequality ----:

(a) x > 0

- (b) 3x + 5 < 0
- (c) x + 2 < 0
- (d) $x 2 < 0 \sqrt{}$

(a) Perpendicular (b) Equal 1/

(c) Unequal

(d) Acute

TJT-13 Solved Up-to-Date Model Papers	A)
- I I I I I Data Madal Danarel	10
PETT, TARCAMAN UN-UN-UNION NIVUCI FOUNT OF	X
I DE LA SOUTE OF THE PROPERTY	Ý.
THE RESERVE OF THE PARTY OF THE	篇

MATHEMATICS 9Th

	th Class 2019	
Math (Science)	Group-I	Paper-I
Time: 2.10 Hours	(Subjective Type)	A STATE OF THE PARTY OF THE PAR

(Part-I)

Write short answers to any Six (6) questions: 12

Define column matrix.

(i) Define column matrix.

Ans A matrix is called a column matrix if it has only one

column. e.g.,
$$M = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $N = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ are column matrices

of order 2 – by – 1 and 3 – by – 1 respectively.

Find the transpose of the matrix: $B = [5 \ 1 \ -6]$

Ans Given,
$$B = \begin{bmatrix} 5 & 1 & -6 \end{bmatrix}$$
Transpose: $B^t = \begin{bmatrix} 5 \\ -6 \end{bmatrix}$

Simplify: $\sqrt[3]{-125}$.

Ans
$$\sqrt{-125} = (-125)^{1/3}$$

$$= [-(5 \times 5 \times 5)]^{1/3}$$

$$= [-(5^3)]^{1/3}$$

$$= -5^{3 \times 1/3} = -5^1$$

$$= -5$$

Write real and imaginary parts of the number:

$$-1 + 2i$$
Ans Real Part = -1

Imaginary Part = 2i

83,000 Express in scientific notation: (v)

Ans
$$83000 = 83000 \times \frac{10000}{10000}$$
$$= \frac{83000}{10000} \times 10000$$
$$= 8.3 \times 10^{4}$$

TIPS Solved Up-to-Date Model Papers 150 MATHEMATICS 9TH

(vi) Find the value of x $\log_3 x = 4$

 $\log_3 x = 4$

By writing in exponential form, we have:

$$x = 3^4$$

Thus, x = 81

(vii) Evaluate $\frac{x^3y - 2z}{xz}$ for x = -1, y = -9, z = 4

By putting the values of x, y and z in the given

expression, i.e.,

$$\frac{x^{3}y - 2z}{xz} = \frac{(-1)^{3}(-9) - 2(4)}{(-1)(4)}$$

$$= \frac{(-1)(-9) - 8}{-4}$$

$$= \frac{9 - 8}{-4}$$

$$= \frac{-1}{4}$$

(viii) Rationalize the denominator: $\frac{58}{7-2\sqrt{5}}$

Ans

$$\frac{58}{7 - 2\sqrt{5}} = \frac{58}{7 - 2\sqrt{5}} \times \frac{7 + 2\sqrt{5}}{7 + 2\sqrt{5}}$$

$$= \frac{58(7 + 2\sqrt{5})}{(7 - 2\sqrt{5})(7 + 2\sqrt{5})}$$

$$= \frac{58(7 + 2\sqrt{5})}{(7)^2 - (2\sqrt{5})^2}$$

$$= \frac{58(7 + 2\sqrt{5})}{49 - 20}$$

$$= \frac{58(7 + 2\sqrt{5})}{29}$$

$$= 2(7 + \sqrt{5})$$

(ix) Factorize:

 $24x^2 - 65x + 21$

Ans $24x^{2} - 65x + 21$ $= 24x^{2} - 56x - 9x + 21$ = 8x(3x - 7) - 3(3x - 7)

$$=(3x-7)(8x-3)$$

3. Write short answers to any Six (6) questions: 12

Find the H.C.F of the following expression: 102xy²z, 85x²yz and 187xyz²

Ans

H.C.F = Multiplication of common factors = 17xyz

(ii) Solve the equation:

$$\sqrt{5x - 7} - \sqrt{x + 10} = 0$$

 $\sqrt{5x - 7} - \sqrt{x + 10} = 0$ $\sqrt{5x - 7} = \sqrt{x + 10}$

Squaring both sides, we get

$$(\sqrt{5}x - 7)^{2} = (\sqrt{x + 10})^{2}$$

$$5x - 7 = x + 10$$

$$5x - x = 10 + 7$$

$$4x = 17$$

$$x = \frac{17}{4}$$

(iii) Solve:

$$|2x + 3| = 11$$

Ans

$$|2x + 3| = 11$$

$$\pm (2x + 3) = 11$$

 $2x + 3 = 11$
 $2x = 11 - 3$;
 $2x = 8$

$$-(2x + 3) = 11$$

 $2x + 3 = -11$
 $2x = -11 - 3$

$$x = \frac{8}{2}$$

$$2x = -14$$

$$x = 4$$

$$x = \frac{-14}{2}$$

$$x = -7$$

(iv) Find the value of m and c of 2x - y = 7 by expressing it in the form of y = mx + c.

Ans Given, 2x - y = 7

$$-y = -2x + 7$$

 $y = 2x - 7$

(1)

By comparing equ (1) with y = mx + c, we get

$$m = 2$$
 $c = -7$

and

Define origin.

The point O, where x-axis and y-axis meet is called origin

Find the distance between the points: (vi)

Ans

Here, $x_1 = -8$, $y_1 = 1$

$$x_2 = 6$$
, $y_2 = 1$

The Distance Formula is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(6 - (-8))^2 + (1 - 1)^2}$$

$$= \sqrt{(6 + 8)^2 + (0)^2}$$

$$= \sqrt{(14)^2}$$

$$= 14$$

(vii) Define scalene triangle.

Ans A triangle is called a scalene triangle if measures of all the three sides are different.

(viii) State S.A.S. postulate.

In any correspondence of two triangles, if two sides and their included angle of one triangle are congruent to the corresponding two sides and their included angle of the other triangle, then the triangles are congruent.

In △ABC ←→ △DEF, shown in the following figures,

$$| AB \cong \overline{DE} |$$

$$| AA \cong \angle D$$

$$| \overline{AC} \cong \overline{DF} |$$

A figure formed by four non-collinear points in the plane is called a parallelogram if:

its opposite sides are of equal measure;

its opposite sides are parallel;

3. measure of none of the angles is 90°.

4. Write short answers to any Six (6) questions: 12

(i) Define the bisector of a line segment.

A line 'l' is called the bisector of line segment if l is perpendicular to the line segment and passes through its mid-point.

(ii) 3 cm, 4 cm, 5 cm are the length of the triangle. Give the reason.

3+4>53+5>4

+ 5 > 4 (ii

4 + 5 > 3 (iii)

From (i), (ii) and (iii) it is proved that the given set can from a triangle. Because, by theorem, the sum of the lengths of any two sides of a triangle is greater than the length of the third side.

(iii) Define congruent triangles.

Ans Two triangles are said to be congruent written symbolically as, \cong , if there exists a correspondence between them such that all the corresponding sides and angles are congruent.

(iv) Find unknown value of x in given figure:

Ans As the above triangle is right angled AABC. So, In right angled, by Pythagoras Theorem:

$$(mAC)^2 = (mAB)^2 + (mBC)^2$$

 $(\sqrt{2})^2 = (x)^2 + (1)^2$
 $2 = x^2 + 1$

$$2-1=x^{2}$$

$$\Rightarrow \sqrt{x^{2}}=1$$

$$\sqrt{x^{2}}=\sqrt{1}$$

$$x=1$$
 cm

(v) What is converse of Pythagoras theorem?

If the square of one side of a triangle is equal to the sum of squares of the other two sides then the triangle is a right angled triangle.

(vi) Find area of given figure:

Length of the rectangle = 6 cm Width of the rectangle = 3 cm Area of the rectangle = Length \times Width = 6×3 = 18 sq. cm

(vii) Define the triangular region.

Ans A triangular region is the union of a triangle and its interior, *i.e.*, the three line segments forming the triangle and its interior.

(viii) What is meant by circumcentre?

The point of concurrency of the three perpendicular bisectors of the sides of a triangle is called the circumcentre of the triangle.

(ix) Construct a AABC in which:

mAB = 4.2 cm, mBC = 3.9 cm, mCA = 3.6 cm

Solved Up-to-Date Model Papers 155 Steps of Construction: Take a line segment AB of length 4.2 cm. Take A as centre and drawn arc of 3.6 cm radius. Take B as centre and draw an arc of 3.9 cm radius. This cuts the first arc at C. Join C to A, B. ABC is the required triangle. (Part-II) NOTE: Attempt THREE (3) questions in all. But question No. 9 is Compulsory. Q.5.(a) Solve the system of linear equations Cramer's rule: (4)2x - 2y = 43x + 2y = 6For Answer see Paper 2017 (Group-I), Q.5.(a). $\left(\frac{a^{2l}}{a^{l+m}}\right)\left(\frac{a^{2m}}{a^{m+n}}\right)\left(\frac{a^{2n}}{a^{n+l}}\right)$ (4)(b) Simplify: For Answer see Paper 2018 (Group-II), Q.5.(b). Q.6.(a) Use log table to find the value of: (4) 0.8176×13.64 $x = 0.8176 \times 13.64$ Ans $\log x = \log (0.8176 \times 13.64)$ $= \log 0.8176 + \log 13.64$ = 0.0874 + 1.1348 $\log x = 1.0473$ Antilog (log x) = Antilog (1.0473) x = 11.15If m + n + p = 10 and mn + np + mp = 27, then (4)find the value of m2 + n2 + p2. For Answer see Paper 2017 (Group-I), Q.6.(b). (4)Q.7.(a) Factorize: 9x4 + 36y4 $9x^4 + 36y^4 = 9x^4 + 36y^4 + 36x^2y^2 - 36x^2y^2$ $= (3x^2)^2 + (6y^2)^2 + 2(3x^2)(6y^2) - (6xy)^2$

 $=(3x^2+6y^2)^2-(6xy)^2$

(b) Construct the ΔABC, also draw the bisectors of their angles: (4)

mAB = 3.6 cm, mBC = 4.2 cm and m\B = 75°

For Answer see Paper 2016 (Group-I), Q.8.(b).

Q.9. Prove that any point inside an angle, equidistant from its arms, is on the bisector of it. (8)

Ans For Answer see Paper 2015 (Group-I), Q.9.

Prove that parallelograms on the same base and between the same parallel line (or of the same altitude) are equal in area.

Ans Given:

Two parallelograms ABCD and ABEF having the same base AB and between the same parallel lines AB and DE.

To Prove:

The area of parallelogram ABCD = area of

Proof:

Statements				
area of (parallologram Apop)	Reasons			
area of (parallelogram ABCD) = area of (quad. ABED) + area of (ΔCBE) (1) area of (parallelogram ABEF) = area of (quad. ABED) + area of	[Area addition axiom]			
(ΔDAF) (2)	[Area addition axiom]			
In As CBE and DAF	L' " oa addition axionij			
mCB = mDA	[opposite sides of a parallelogram]			
mBE = mAF	[opposite sides of a parallelogram]			
∠CBE = ∠DAF				
ΔCBE ≤ ΔDAF	[: BC AD, BE AF]			
: area of (ΔCBE) = area of (ΔDAF) (3) Hence area of (parallelogram ABCD)	[cong. area axiom]			
= area of (parallelogram ABEF)	from (1), (2) and (3)			
A 1 TO THE RESIDENCE OF THE PARTY OF THE PAR				