Inter (Part-I) 2018

Chemistry		Grou	PAPER				
Time: 20 Minutes		(OBJECTIV	Marks: 17				
Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question. 1-1- Which of the following molecules has zero dipole							
	moment:		01101				
	(a) NH ₃		CHCl ₃				
	(c) H ₂ O	(d)	CO ₂ 1/				
2-	NH ₃ shows	maximum be	oiling point	among the			
	(a) Very small solution (b) Lone pair of (c) Enhanced ed (d) Pyramidal s	f electrons on relectronegative	nitrogen character of	nitrogen. 1			
3-	Approximate p						
	(a) 2.7		3.1 1				
4	(c) 4.2	(d)	4.5				
4-	27 g of Al will of O ₂ to produc	e Av ₂ U ₃ :	tely with ho	w much mass			
	(a) 8 g of oxyge	en (b)	16 g of oxyg	ien			
j-	(c) 32 g of oxyg	en (d)	24 g of oxyg	en 1			
	The rate of read (a) Increases as (b) Decreases	s reaction proc	eede				
 (b) Decreases as reaction proceeds √ (c) Remains same as reaction proceeds (d) May decrease as in the coordinate of the coordina							
(d) May decrease or increase as reaction proceeds When 6d orbital is complete, the entering electron							
	(a) 7s (c) 7d		7p 1/7f				

	Solved Up-to-Date Papers 145		CHEMISTRY F.Sc. PART-I			
masses of methane and oxygen are mixed in an						
The fraction of total						
pressure exerted by oxygen is:						
		b)	0			
	$(c)\frac{1}{9}$ (c)	d)	16 17			
g.	The number of moles of (CO	which contain 8.0 g of			
	ovvden:					
		b)	0.50			
	(c) 1.0 (c)		1.50			
9-	If an endothermic reaction	n	is allowed to take place			
	very rapidly in an air, the temperature of surrounding					
	air:					
			Increases			
		-	Remains unchanged			
10-						
	vapour pressure:					
	(a) Equal to water (b) More than that of water a					
	(b) More than that of water √(c) Equal to ethanol					
	(d) Less than that of water					
11-						
			One σ and two π $\sqrt{}$			
			Two σ and one π			
12-	Geometry of diamond is:	ч,	I WO O and One A			
		h)	Cubic 1			
		•	None of these			
13-	Oxidation number of chron					
			+2			
		5.5	+4			
14-	In the ground state of a	n	atom the electrone are			
	present:		acom, the elections are			
	(a) In the nucleus					
	(b) In second shell					
	(c) Nearest to the nucleus v					
	(d) Farthest from the nucleus					

15- The chromatography in which stationary phase is liquid is called:

(a) Thin layer chromatography

(b) Partition chromatography 1

(c) Adsorption chromatography

(d) Gel chromatography

16- The pH of human blood is maintained at:

(a) 7.35 V

(b) 7.53

(c) 7.63

(d) 7.73

17- Ideal solutions obey:

(a) Henry's law

(b) Avogadro's law

(c) Raoult's law 1/

(d) Smith's law

Inter (Part-I) 2018

PAPER: I Group-I Chemistry Time: 2.40 Hours (SUBJECTIVE TYPE) Marks: 68

SECTION-I

Write short answers to any EIGHT (8) questions:

How is the law of conservation of mass obeyed during stoichiometric calculations?

Ans Stoichiometric calculations are those in which balance chemical equation is used. Balanced chemical equation means that masses of reactant and product are same. This means that law of conservation of mass is obeyed. Otherwise, no calculation is correct.

How do many chemical reactions take place in our (ii) surroundings involve the limiting reactant?

Ans In our surrounding, many chemical reactions are taking place which involve oxygen. In these reactions, oxygen is always in excess quantity while, other reactants are in lesser amount. Thus, other reactants act as limiting reactants.

(iii) How do no individual Ne atom in the sample of the

element has mass of 20.18 a.m.u.?

Neon has three isotopes 20Ne, 21Ne, 22Ne. The average atomic mass of neon is 20.18 amu. Atomic mass depends upon the number of possible isotopes and their natural abundance.

 $(m_1 \times a) + (m_2 \times b) + (m_3 \times c)$ Average atomic mass =

Where 'a', 'b' and 'c' are the natural abundance of isotopes. Now, by putting the values:

 $(20 \times 90.92) + (21 \times 0.26) + (22 \times 8.82)$

= 20.18 a.m.u.

Define qualitative analysis and quantitative analysis (iv) of a compound.

Ans Qualitative analysis:

TIPS Solved Up-to-Date Papers 148 CHEMISTRY F.Sc. PART-I

The detection and identification of elements in a compound is called qualitative analysis.

Quantitative Analysis:

The determination of amount or percentage of different elements in a compound is called quantitative analysis.

What is difference between Gooch's crucible and

sintered glass crucible?

Gooch Crucible

- It is made of porcelain.
- It is a porous base.
- Its base needs to cover with a filter paper or an asbestos mat.
- To filter the reactive solutions, base is covered with asbestos mat.

Sintered Glass Crucible

- It is made of glass.
- In its base, sintered glass disc is sealed.
- There is no need to cover the base with filter paper or asbestos mat.
- There is no need of any alteration.

Why is SO₂ comparatively non-ideal at 273 K but behaves ideally at 327°C?

Increasing the temperature, increases the intermolecular spaces and decreases the intermolecular forces, thus, increasing ideality, so at high temperature of 327°C, SO, is ideal as compared to 273 K.

(vii) Derive expression of molecular mass of a gas by using general gas equation.

Ans This equation shows that if we have any quantity of an ideal gas, then the product of its pressure and volume is equal to the product of number of moles, general gas constant and absolute temperature. This equation is reduced to Boyle's law, Charles' law and Avogadro's law, when appropriate variables are held constant.

PV = n RT, when T and n are held constant.

PV = k (Boyle's law)

 $V = R \frac{nT}{P}$, when P and n are held constant,

V = kT (Charles' law)

 $V = R \frac{nT}{P}$, when P and T are held constant,

V = kn (Avogadro's law)

For one mole of a gas, the general gas equation is:

$$PV = RT$$
 or $\frac{PV}{T} = R$

It means that ratio of PV to T is a constant quantity (molar gas constant):

Hence,

$$\frac{P_1V_1}{T_1} = R$$
 $\frac{P_2V_2}{T_2} = R$

Therefore,

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

(viii) Where do natural plasma and artificial plasma exist?

Artificial plasma can be created by ionization of a gas, as in neon signs. Plasma at low temperature is hard to maintain because outside a vacuum, low temperature plasma react rapidly with any molecular it encounters.

Natural plasma exists only at very high temperature, or

low temperature vacuums.

(ix) Calculate pH of 10⁻⁴ mole dm⁻³ solution of HCl.

HCl
$$\rightleftharpoons$$
 H⁺ + Cl⁻
10⁻⁴ mol. dm⁻³ \rightleftharpoons 0 + 0 t = 0 sec
0 \rightleftharpoons 10⁻⁴ mol. dm⁻³ + 10⁻⁴ mol. dm⁻³ t = equilibrium
[H^{\theta}] = 10⁻⁴
pH = ?
pH = -log [H^{\theta}]
pH = -log 10⁻⁴
pH = +4 log 10

Why does catalyst affect the equilibrium constant?

Ans A catalyst cannot affect the equilibrium constant of a reaction but it helps the equilibrium to be established earlier. The rate of forward and backward steps are increased equally. Write the relationship of Kp and Kc.

Ans Let the general reaction be, aA + bB == cC + dD When the concentration of reactants and products are in mole⁻³, then equilibrium constant is written as:

$$K_{c} = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$$
or $K_{c} = \frac{C^{c}C.C^{d}D}{C^{a}A.C^{b}B}$ (1)

When the concentration are expressed in terms of partial pressure (P) for gaseous reactant and product, then,

$$K_{P} = \frac{P^{c}C.P^{d}D}{P^{a}A.P^{b}B}$$
 (2)

When the concentration are expressed in term of mole fractions (X), then,

$$K_c = \frac{X^c C. X^d D}{X^a A. X^b B}$$
 (3)

The relation between these equilibrium constants are as follows:

$$K_p = K_c (RT)^{\Delta n}$$

(xii) Why can solid ice at 0°C be melted by applying pressure without supply of heat from outside?

Ans According to Boyle's law, pressure is inversely proportional to volume keeping temperature constant. So, at 0°C, if pressure is applied to a solid ice, volume will be decreased.

When water freezes, it occupies 9% more space. Solid ice occupies more volume than liquid water. When pressure is applied to solid ice at 0°C, keeping temperature constant, it melts, and volume is decreased.

3. Write short answers to any EIGHT (8) questions:

(i) Define isomorphism and polymorphism.

Ans Isomorphism:

It is a phenomenon in which two different substances exist in the same crystalline form. These different substances are isomorphs.

CHEMISTRY F.Sc. PART-I

Solved Up-to-Date Papers

polymorphism: It is a phenomenon in which a compound exists in more than one crystalline forms. That compound is polymorphic, and these forms are called polymorphs of each other. e.g., AgNO3, CaCO3.

How are liquid crystals used to locate veins, arteries, infections and tumors?

Liquid crystalline substances are used to locate veins, arteries, infections and tumors. The reason is that these parts of the body are warmer than the surrounding tissues. Specialists can use the techniques of skin thermography to detect blockages in veins and arteries. When a layer of liquid crystal is painted on the surface of the breast, a tumor shows up as a hot area which is coloured blue. This technique has been successful in the early diagnosis of breast cancer.

Lower alcohols are soluble in water but hydrocarbons

are insoluble. Give reason.

Lower alcohols are soluble in water because they have tendency to form hydrogen bonds but hydrocarbons are not soluble in water because they are non-polar compounds and there are no chances of hydrogen bonding between water and hydrocarbon molecules.

(iv) Why electrical conductivity of the metals decrease by

increasing temperature?

In metals, there are free electrons at normal temperature. So, when we increase temperature it resistively increases, so, conductivity decreases.

Why is dipole moment of CO₂ is zero but that of CO is 0.12 D?

In case of CO2 and molecules with linear geometry, the two dipole moment cancelled out by each other and result is zero. There are molecules like CO with dipole moment. These dipole moment cannot cancel each other due to non-linear (angular) geometry. Hence, resultant dipole moment is not zero and in CO, it is 0.12 D.

Why do ionic compounds not exhibit the phenomenon (vi)

of isomerism but covalent compounds do?

Ans The ionic compound involve electrostatic lines of forces between oppositely charged ions. Therefore, such bonds are

TIPS Solved Up-to-Date Papers 152 CHEMISTRY F.Sc. PARTS non-rigid and non-directional. Because of this, ionic compounds

do not exhibit the phenomenon of isomerism.

On what factors, strength of bond depends upon?

Bond energy is a measure of the strength of a bond. The strength of a bond depends upon the following factors:

(i) Electronegativity difference of bonded atoms.

(ii) Sizes of the atoms.

(iii) Bond length.

Differentiate between coordinate covalent bond and covalent bond.

In a covalent bond, both atoms share a pair of electrons whereas in a coordinate covalent bond, only one atom shares a pair of electrons with another atom.

(ix) What are exothermic and endothermic reactions?

Give examples.

Those chemical reactions which release the heat are called exothermic reactions, while, those chemical reactions which absorb the heat are called endothermic reactions.

(x) Define enthalpy of solution. Give examples.

The standard enthalpy of a solution is the amount of heat absorbed or evolved when one mole of a substance is dissolved in so much solvent that further dilution results in no detectable heat change. HAD HESTERSON WELLEN

Example:

Enthalpy of solution of ammonium chloride is +16.2 kJ mol⁻¹ and that of sodium carbonate is -25.0 kJ mol⁻¹.

(xi) What are zeotropic and azeotropic mixtures?

Ans Zeotropic:

The liquid mixtures which distil with a change composition are called as zeotropic mixtures.

Azeotropic mixtures:

Such liquid mixtures, which distil without change composition, are called azeotropic mixtures.

(xii) What is fractional crystallization?

Ans Fractional crystallization is the separation of substances from their solutions one by one depending upon their solubilities at different temperatures.

Write short answers to any SIX (6) questions:

what particles are formed by the decay of free neutron? Give equation.

Free neutron decays into a proton (P) with the emission of an electron (e) and a neutrino (n).

Equation:

$$^{1}_{0} \xrightarrow{}^{1}_{+1}P + ^{0}_{-1}e + ^{0}_{0}n$$

Justify that the distance gaps between different orbits go on increasing from lower to the higher orbits.

Ans Consider the following equation:

$$r = \frac{\epsilon_o n^2 h^2}{\pi m Ze^2}$$

For H-atom Z = 1

$$r = \frac{\varepsilon_0 n^2 h^2}{\pi m e^2} \times n^2$$

Since,

$$\frac{\epsilon_0 h^2}{\pi \, \text{m} \, \text{e}^2} = 0.529^\circ \, \text{A}$$

$$r = 0.529^{\circ} A(n^2)$$

By putting the values of 'n' as 1, 2, 3, 4, . . . the radii of orbits of hydrogen atom are:

$$n = 1$$

 $r_1 = 0.529^{\circ} A \times (1) = 0.529^{\circ} A$

$$n = 2$$

$$r_2 = 0.529^{\circ}(A) \times (2)^2 = 2.11^{\circ} A$$

$$n = 3$$

$$r_3 = 0.529^{\circ} A \times (3)^2 = 4.75^{\circ} A$$

$$n = 4$$

$$r_4 = 0.529^{\circ} A \times (4)^2 = 8.4 A^{\circ}$$

$$r_5 = 5$$

 $r_5 = 0.529^{\circ} \text{ A } (5)^2 = 13.22^{\circ} \text{ A}$

Gaps between these orbits can be calculated as:

$$r_3^2 - r_2^1 = 2.64^{\circ}A$$

$$r_4 - r_3 = 3.65^{\circ}A$$
 $r_5 - r_4 = 4.82^{\circ}A$

The comparison of radii shows that the gaps between orbits of H-atom go on increasing as we move from first orbit to higher orbits. It reflects that orbits are not equally spaced.

What is Zeeman effect?

Ans When the excited atoms of hydrogen are placed in a magnetic field, its spectral lines are further split up into closely spaced lines. This type of splitting of spectral lines is called Zeeman's effect.

(iv) Distribute electrons in orbitals of: (a) 24Cr (b) 35Br

Ans (a) 24Cr:

(b) 35Br:

$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^{10}$, $4p_x^2$, $4p_y^2$, $4p_z^1$.

A salt bridge maintains the electrical neutrality in the cell. Give reasons to support your answer.

Ans A salt bridge is a U-tube containing saturated solutions of strong electrolytes, e.g., KCl, KNO3. It connects the two electrolytic solution. When electrochemical reaction takes place in the cell, it allows the passage of negative ions from the cathode compartment to anode compartment. As a result of that both compartments become neutral.

Calculate the oxidation numbers of the elements

underlined in the following compounds:

(i) K, MnO₄ (ii) Ca(ClO₃),

Ans (i) K₂MnO₄:

$$2(O.N \text{ of } K) + O.N \text{ of } Mn + 4(O.N \text{ of } O) = 0$$

 $2(+1) + Mn + 4(-2) = 0$
 $2 + Mn - 8 = 0$

$$Mn = +6$$

(ii) Ca(CIO₃)₂:

O.N of Ca +
$$(O.N \text{ of } Cl)_2 + 6(O.N \text{ of } O) = 0$$

+2 + 2Cl + 6(-2) = 0
2 + 2Cl - 12 = 0

$$2Cl = 10$$

$$Cl = \frac{10}{2}$$

$$Cl = +5$$

SHE acts as anode when connected with Cu electrode but as cathode with Zn electrode. Give reasons in support of your answer.

SHE has electrode potential equal to zero. When it is coupled with Zn, Zn has low reduction potential and has 0.76 V more tendency than hydrogen to show oxidation and acts as anode. Hydrogen acts as cathode.

When Cu is coupied with hydrogen, Cu has high reduction potential and has 0.34 V more tendency than hydrogen to show reduction and acts as cathode. Then hydrogen acts as anode.

(viii) Define specific rate constant. Give equation to support your answer.

Ans Specific Rate Constant:

It states that the rate of reaction is proportional to the active mass of the reactant or to the product of active masses, if more than one reactants are involved in a chemical reaction.

Rate of reaction = K[A]a [B]b

(ix) Define autocatalysis. Give equation to support your answer.

"In some reactions, a product formed acts as a catalyst. This phenomenon is called as autocatalysis."

Equation: $2KMnO_4 + 3H_2SO_4 + 5(COOH)_2 \xrightarrow{Mn^{2+}} K_2SO_4 + 2MnSO_4 + 10CO_2 + 8H_2O$

SECTION-II

NOTE: Attempt any Three (3) questions.

Q.5.(a) Serotenin (Molar mass = 176 g mol⁻¹) is a compound that conduct nerve impulse in brain and muscle. It contains 68.2% C, 6.86% H, 15.09% N and 9.08% O. What is its molecular formula?

C = 68.2 %Given: H = 6.86 % N = 15.09 %

0 = 9.08 %

Dividing above %age by their atomic masses, we get mole ratios.

$$C = \frac{68.2}{12} = 5.68$$

$$H = \frac{6.86}{1.008} = 6.80$$

$$N = \frac{15.09}{14} = 1.08$$

$$0 = \frac{9.08}{16} = 0.57$$

Dividing above mole ratios with least value, we get atomic ratio.

$$C = \frac{5.68}{0.5} = 9.96$$

$$H = \frac{6.80}{0.57} = 12.0$$

$$N = \frac{1.08}{0.57} = 1.89$$

$$0 = \frac{0.57}{0.57} = 1$$

After rounding of the atomic ratio, write atomic ratios of elements below their symbols. So, the empirical formula is C10H12N2O.

Empirical formula mass = 10C + 12H + 2N + 0

$$= 176 \, \mathrm{g \, mol^{-1}}$$

So,

Putting the values

$$n = \frac{176 \text{ g mol}^{-1}}{176 \text{ g mol}^{-1}}$$

Multiply empirical formula by value of 'n'. We shall get molecular formula.

> Molecular formula = n x empirical formula $= 1 \times (C_{10}H_{12}N_2O)$

Write down any four properties of molecular solids. (4)

Properties of the Molecular Solids:

X-ray analysis has shown the regular arrangements of atoms in constituent molecules of these solids, and we get the exact positions of all the atoms.

The forces, which hold the molecules together in molecular crystals, are very weak. So, they are soft and

easily compressible.

They are mostly volatile and have low melting and boiling points. They are bad conductors of electricity, have low densities and sometimes transparent to light. Polar molecular crystals are mostly soluble in polar solvents, while non-polar molecular crystals are usually soluble in non-polar solvents.

lodine is one of the best examples of a molecular solid.

Q.6.(a) Derive Boyle's law and Charles's law from kinetic equation.

Ans Boyle's Law:

In Boyle's law, the pressure and volume are variables, while the temperature and quantity of a gas remains constant. Boyle's law is stated as follows:

The volume of a given mass of a gas at constant temperature is inversely proportional to the pressure applied to

the gas.

Voca So,

(when the temperature and number of moles are constant.)

V = K or

PV = k (when T and n are constant.)

'k' is proportionality constant. The value of k is different

for the different amounts of the same gas.

According to the equation (1), Boyle's law can also be defined as "The product of pressure and volume of a fixed amount of a gas at constant temperature is a constant quantity." $P_2V_2=k$

and $P_1V_1=k$

Hence, $P_1V_1 = P_2V_2$

P,V, are the initial values of pressure and volume, while P₂V₂ are the final values of pressure and volume.

Charles' Law:

It is a quantitative relationship between temperature and volume of a gas and was given by French scientist J. Charles in 1787. According to this law, "The volume of the given mass of a gas is directly proportional to the absolute temperature when the pressure is kept constant."

(when pressure and number of moles are constant)

$$V = kT$$

$$V = k$$

If the temperature is changed from T₁ to T₂ and volume changes from V₁ to V₂, then,

$$\frac{V_1}{T_1} = k$$
 and $\frac{V_2}{T_2} = k$
So, $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ (2)

The ratio of volume to temperature remains constant for same amount of gas at same pressure.

Describe J.J. Thomson's experiment for determining (b) e/m value of electron.

Ans In 1897, J.J. Thomson devised an instrument to measure the e/m value of electron. The apparatus consists of a discharge tube shown in Fig.

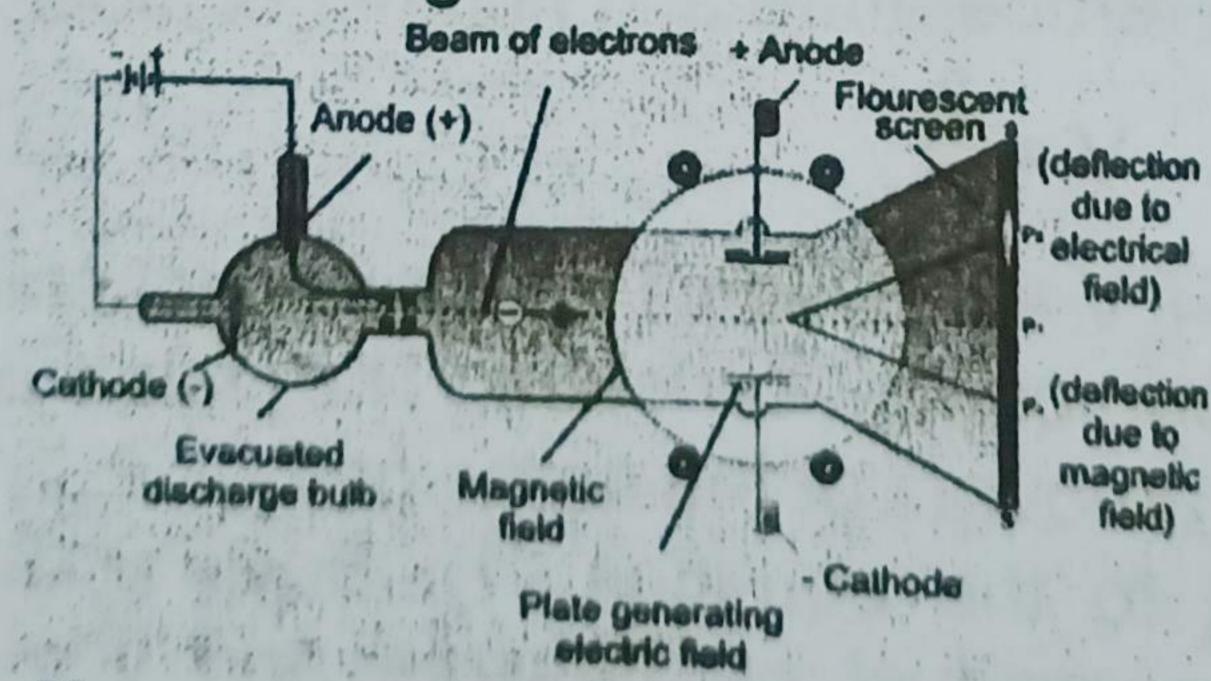


Fig. Measurement of e/m value of an electron.

The cathode rays are allowed to pass through electric and magnetic fields. When both the fields are off then a beam of

In this way, by comparing the strengths of the two fields, one can determine the e/m value of electrons. It comes out to be 1.7588×10^{11} coulombs kg⁻¹. This means that 1 kg of

electrons have 1.7588 × 10¹¹ coulombs of charge.

Q.7.(a) Define dipole-moment. Give its units. How is it used to determine the geometry of molecule by an example?

Ans The product of the magnitude of the charge positive or negative and the distance between them is called dipole moment.

Mathematically,

 $\mu = q \times r$

where μ (mu) = dipole moment

q = charge

r = distance between the two positive and negative centres Units:

(i) Debye (D)

(ii) meter-coulomb (mC)

 $ID = 3.336 \times 10^{-30} \, \text{mC}$

Consider a molecule A-B, which is 100% ionic. A is full positive and B full negative. The bond length of this hypothetical molecule is supposed to be

 $1A^0 = 10^{-10} \, \mathrm{m}$

So, dipole moment for such molecule is

moment for Such Holicota.

$$\mu = 1.6022 \times 10^{-19} \text{ C} \times 10^{-10} \text{ m}$$

 $= 1.6022 \times 10^{-29} \text{ mC}$

Relationship:

$$3.336 \times 10^{-30} \text{ mC} = 1D$$

1" = $\frac{1}{3.336 \times 10^{-30} \text{ mC}}$
 $1.602 \times 10^{-29} \text{ mC} = \frac{1.6022 \times 10^{-29} \text{ mC}}{3.336 \times 10^{-30} \text{ mC}} = 4.8 \text{ D}$

Heteroatomic molecules like HCl etc. become polar due to difference in electronegativity. The polarity is created on the bonded atoms. The degree of activity of a molecule is expressed in terms of dipole moment. It is a vector quantity having magnitude and direction from positive to negative end of dipole. Length of the arrow indicates magnitude of dipole moment. Non-polar molecules have zero dipole moment.

In case of polyatomic molecules, the net dipole moment is the resultant of vector addition of dipole moments of different

bonds.

State Hess's law. Explain it giving two examples. (4)

Ans For Answer see Paper 2016 (Group-II), Q.7.(b).

Q.8.(a) State Le-Chatelier's principle. How is this principle used to explain effect of change in concentration on a reaction at equilibrium state?

The Le-Chatelier's Principle:

Le-Chatelier studied the effects of concentration, pressure

and temperature on equilibria.

This principle states that if a stress is applied to a system at equilibrium, the system acts in such a way so as to nullify, as far as possible, the effect of that stress.

Effect of Change in Concentration:

In order to understand the effect of change in concentration on the reversible reaction, consider the reaction in which BiCl3 reacts with water to give a white insoluble compound BiOCl.

 $BiCl_3 + H_2O \rightleftharpoons BiOCl + 2HCl$

The equilibrium constant expression for above reaction can be written as:

$$K_{C} = \frac{[BiOC/][HC/]^{2}}{[BiCl_{3}][H_{2}O]}$$

Aqueous solution of BiCl₃ is cloudy, because of hydrolysis and formation of BiOCl. If a small amount of HCl is added to this solution, it will disturb the equilibrium and force the system to move in such a way, so that effect of addition of HCl is minimized. The reaction will move in the backward direction to restore the equilibrium again and a clear solution, will be obtained. However, if water is added to the above solution the system will move in the forward direction and the solution will again become cloudy. The shifting of reaction to forward and backward direction by disturbing the concentration is just according to Le-Chatelier's principle.

So, in general, we conclude that addition of a substance among the reactants, or the removal of a substance among the products at equilibrium stage disturbs the equilibrium position and reaction is shifted to forward direction. Similarly, the addition of a substance among the products or the removal of a substance among the reactants will derive the equilibrium towards the backward direction. Removing one of the products formed can, therefore, increase the yield of a reversible reaction. The value of K_c, however, remains constant. This concept is extensively applied in common ion effect and follows the Le-Chatelier's principle.

(b) Define electrochemical series and give any two applications of it. (4)

Ans For Answer see Paper 2016 (Group-II), Q.9.(b).

Q.9.(a) The freezing point of pure camphor is 178.4°C. Find the freezing point of a solution containing 2.0 g of a non-volatile compound, having molecular mass 140, in 40 g of camphor. The molal freezing point constant of camphor is 37.7°C kg mol⁻¹. (4)

Freezing point of camphor $= 178.4^{\circ}\text{C}$ Mass of solute (W₂) = 2.00 gMass of solvent (W₁) = 40 gMolar mass of solute (M₂) = 140Molal freezing point constant of solvent $= 37.7^{\circ}\text{ C kg mol}^{-1}$

Freezing point of solution

Applying the equation

$$\Delta T_f = K_f \frac{1000 \text{ W}_2}{\text{W}_1 \times \text{M}_2}$$

We have to calculate, the freezing point of solution, so first we get the depression in freezing point ΔT_f , then subtract it from freezing point of pure solvent.

$$\Delta T_f = \frac{37.7 \times 1000 \times 2}{40 \times 140} = 13.46$$
°C

Freezing point of solution = 178.4 - 13.46 = 164.94°C

- What are enzymes? Mention the characteristics of (b) enzyme catalysis.
- Ans For Answer see Paper 2015 (Group-II), Q.8.(a).