	Chemistry	Lahore Board 2015		Inter Part-I Group – I	
	ne: 20 Min.	Obje	ctive Type	Marks = 17	
Note	Note: Four possible answers A, B, C and D to each question are given. The choice which you think is				
	correct, fill	that circ	le in front of the	at question with	
				ook. Cutting or in zero mark in	
1.1	that question		g has zero dipole	momont	
141	(A) NH ₃	FIOHOWING	(B) BF ₃	moment.	
~	(C) H₂O		(D) H₂S		
2.			AgNO ₃ is adde ecipitate is remo		
	filtrate contains				
	(C) Ba $^{+2}$ and NC	O ₃ ions O ₃ only	(B) Ag⁺, Ba⁺² and (D) Ba⁺², NO₃⁻ ar	nO₃ ions nd Ct ions	
3.	In dry ice CO ₂ (A) Ionic crysta			tolo	
	` '		(B) Covalent crys (D) Any type of cr		
4.	Molarity of pure (A) 1		: (B) 18	<u> </u>	
	(C) 6		(D) 55.5		
5.	Orbitals having (A) Hybrid orbit		ergy are called : (B) Valence orbita	ale.	
	(C) Degenerate			ais	
6.	In H_2SO_4 the of (A) +2		umber of S is : (B) +6		
	(C) +8		(D) +4		
7.			stant at which te ome twice of wha		
	(A) 546°C		(B) 200°C		
8.	(C) 546 K Volume occupi		<u>(</u> D) 273 K · g of N₂ at S.T.P.	is:	
	(A) 2.24 dm ³		(B) 22.4 dm ³		
9.	(C) 1.12 dm ³ Which of the fo		(D) 112.0 cm ³ as highest bond e	energy:	
	(A) HI	-	(B) HBr	3,	
10	(C) HCl The pH of 10 ⁻³		(D) HF SO₄ solution is :		
	(A) 3.0		(B) 2.7		
777	(C) 2.0		(D) 1.5		
Ш	When 6 d orbit to:	al is com	plete the entering	g electron goes	
	(A) 7 f		(B) 7 s		
	(C) 7 p At what extern		(D) 7 d re the boiling poi	nt of water will	
	be 110°C :		* SP40 SP	The state of the s	
	(A) Any value o (B) 765 torr	or pressur	e		
	(C) Between 20 (D) Between 76				
13	In solvent extra	ction the	law applied is:		
	(A) Law of ma	ss action	(B) Distribution	law	
14	(C) Coulomb's The volume of		(D) Boyle's law le CO ₂ is maximu	ım at :	
	(A) S.T.P		(B) 127° and 1	atm.	
15	One calorie is		(D) 273°C and 2	2 atm.	
	(A) 4.184 J		(B) 0.4184 J		
16	(C) 41.84 J The rate of rea	action :	(D) 418.4 J		
	(A) Increases	as the re	action proceeds	10 42	
			eaction proceeds as reaction proc		
Z E	(D) May decre	ease or in	crease as the rea	action proceeds	
4	(A) 3.01×10^2	3	atoms in 22.0 g o (B) 6.02 × 10 ²³	DI GO2 IS :	
	(C) 3.01×10^2	2	(D) 6.02×10^{22}	.00	

	Chemistry	Lahore Board 2015	Inter Part-I Group – I			
	Time: 3.10 hrs	Essay Type	Marks = 83			
	(i) Actual yield i Give reasons.		theoretical yield.			
	 (ii) A compound may have same empirical as well as molecular formula. Justify. (iii) What is Avogadro's number? Give equation to relate the Avogadro's number and mass of an element. (iv) Define sublimation. What type of a substance can be purified by this technique? (v) What is difference between qualitative analysis and quantitative analysis? (vi) Write down the faulty postulates of kinetic molecular theory of gases. (vii) What is plasma state? How is plasma formed at high temperature? (viii) Explain the term enthalpy of atomization. (ix) What is lattice energy? Give an example. 					
	 (x) How the direction of a reversible reaction at any instant can be determined by K_c value? (xi) State Le-Chatelier's principle and discuss the effect of change in concentration of a product on reversible reaction. (xii) A weak acid has strong conjugate base. Justify. 					
	Write short answers to any EIGHT (8) questions: 16 (i) Why different liquids evaporate at different rates even at the same temperature? (ii) How the liquid crystals help in the detection of the blockage in veins and arteries? (iii) Why ionic crystals are highly brittle?					
	 (iv) What is the relationship between polymorphism and allotropy? (v) What are defects in Rutherford's atomic model? (vi) Justify that the distance gaps between different orbitals go on increasing from the lower to higher orbits. (vii) Define Zeeman's effect and Stark effect. (viii) State Pauli Exclusion Principle and Hund's rule. (ix) How the nature of a chemical bond is predicted with the help of electronegativity values of two bonded 					
	(xi) The bond ar that of CH₄ SP³ - hybridi (xii) Explain the to	hemistry is 100% ionic. Jungles of H ₂ O and NH ₃ are although oxygen and nitrized. Why? erm bond order. answers to any SIX (6) q	e not 109.5° like rogen atoms are			
(i) Why the NaCt and KNO ₃ are used to lower the melting point of ice? (ii) Define upper consulate temperature with example. (iii) Define hydrolysis with example. (iv) Voltaic cell is reversible cell, State. (v) How fuel cells produce electricity? (vi) Calculate oxidation number of chromium in CrCt ₃ . (vii) The sum of the coefficients of a balanced chemical equation is not necessarily important to give the order of reaction justify. (viii) Define homogenous catalysis, give two examples. (ix) What is catalytic poisoning? Give two examples.						
		SECTION-II				
		ecular solids? Give examp	les and explain			
	used in rocke How many gra 100 g of N ₂ H, 4H ₂ O + 3N ₂) (a) How volume Waals? (b) Discuss magn (a) Explain import draw structure this theory. (b) Define the foll (i) System. (iii) Surroundir (b) Benzoic acid (Ka = 6.4 × 10 containing 7.2 mole dm ⁻³ be (a) Describe one	wo liquids, hydrazine N ₂ H, ts. They produce N ₂ and arms of N ₂ gas will be form and 200 g of N ₂ O ₄ : (2N and pressure were corrected and spin quantum nurbus of molecular, or and pressure were corrected and spin quantum nurbus of nitrogen (N ₂) molecular, or a consideration owing with example: (ii) Non-spontaneous ng. (iv) Endothermic reacture characteristics of a cate C ₆ H ₃ COOH is a weak m of mol dm ⁻³). What is the Fig of sodium benzoate in charcic acid?	water vapours, need by reacting $\frac{1}{4}$ 2 H_4 + $\frac{1}{4}$ 2 O_4 \longrightarrow 4 the deby Vander 4 hibers. 4 bital theory and le according to 4 reactions. Solve the value of $\frac{1}{4}$ 4 reactions. Solve the value of $\frac{1}{4}$ 4 one-basic acid $\frac{1}{4}$ 4 of a solution one dm³ of 0.02 4 the boiling point			
	SE Note: (i) Attem (ii) Write	enstruction and working of ECTION — III (Practical Properties of the potential Properties of the prope	art) ed, diagram and 1,1,3			
	(iii) Write equati point,		ution, chemical dicator with end ed readings with			

point, procedure and supposed readings with calculations for Part C, D, and E. 1,1,1,1
Separate a mixture of inks by paper chromatography. 5'
Purify benzoic acid by water solution. 5
4 g of impure KOH are dissolved in 500 cm³ solution.
Find out %age purity. 5
5 g of impure KMnO₄ are dissolved per dm³ solution.
Find out the %age purity of the sample. 5
7 g of impure sodium thiosulphate have been dissolved in 250 cm³ solution. Find out %age purity of the sample. 5

Time: 20 Min. Objective Type Marks = 17 Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question. 12 The number of bonds in oxygen molecule is: (A) One of and one m (B) One or and two m (C) Three sigma only) 2 When 50% reactants in a reversible reaction are converted into a product, the value of equilibrium constant K, is: (A) 1 (B) 1 (C) 3 (D) 4 3 Pressure remaining constant, at which temperature the volume of a gas will become twice of what it is at 0°C: (A) 546°K (B) 200°C (C) 546 K (D) 273 K 4 Molarity of pure water is: (A) 1 (B) 18 (C) 55.5 (D) 6 5 The wave number of the light emitted by a certain is 2 × 10° m ⁻¹ . The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10° m 6 The oxidation number of Ct in HCtQ4 is: (A) 4.500 nm (B) 500 m (C) 200 nm (D) 5 × 10° m 7 The boilling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (B) 69°C (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (B) 2.4 g of oxygen (C) 3.2 g of oxygen (B) 2.4 g of oxygen (C) 3.2 g of oxygen (B) 2.4 g of oxygen (C) 4, oxygen (B) 2.4 g of oxygen (C) 4, oxygen (B) 2.7 (C) 2.0 10 The pH of 10°3 mol dm³ of an aqueous solution of H ₃₅ O ₄ is: (A) 3.0 (B) 2.7 (C) 2.0 (C) 2.0 (D) 1.5 (D) 1.15 (D) 1.15 (D) 1.16 (E) 1.10 mm (E) 2.7 (D) 1.16 (D) 1.10 mm (E) 2.7 (D) 1.16 (D) 1.10 mm (E) 2.7 (D) 1.10 mm			Ch	emistry	Lahor	e Board 2	2015	Inter Part-I Group – II
question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question. The number of bonds in oxygen molecule is: (A) One α and one π (B) One α and two π (C) Three sigma only (D) Two sigma only When 50% reactants in a reversible reaction are converted into a product, the value of equilibrium constant K _c is: (A) 2 (B) 1 (C) 3 (D) 4 Pressure remaining constant, at which temperature the volume of a gas will become twice of what it is at 0°C: (A) 546°C (B) 200°C (C) 546 K (D) 273 K Molarity of pure water is: (A) 1 (B) 18 (C) 55.5 (D) 6 The wave number of the light emitted by a certain is 2 × 10° m ⁻¹ . The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10° m The oxidation number of Ct in HCtO₄ is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C 2.7 g of At will react completely with how much mass of O₂ to produce At₂O₃: (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (B) 2.4 g of oxygen (C) 3.2 g of oxygen (B) 2.4 g of oxygen (C) 3.2 g of oxygen (B) 2.4 g of oxygen (C) 3.2 g of oxygen (B) 2.4 g of oxygen (C) 3.2 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.5 g of oxygen (D) 3.6 g of oxygen (D) 3.7 g of oxygen (D) 3.8 g of oxygen (D) 3.8 g of oxygen (D) 3.9 g								
correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question. 1. The number of bonds in oxygen molecule is: (A) One or and one m (B) One or and two m (C) Three sigma only (D) Two sigma only (D) Two sigma only (D) Two sigma only (D) When 50% reactants in a reversible reaction are converted into a product, the value of equilibrium constant K _x is: (A) 2 (B) 1 (C) 3 (D) 4 3. Pressure remaining constant, at which temperature the volume of a gas will become twice of what it is at 0°C: (A) 546°C (B) 200°C (C) 546 K (D) 273 K 4. Molarity of pure water is: (A) 1 (B) 18 (C) 55.5 (D) 6 5. The wave number of the light emitted by a certain is 2 × 10° m ⁻¹ . The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (B) 500 m (C) 200 nm (D) 5 × 10° m 6. The oxidation number of Ct in HCtO ₄ is: (A) +2 (B) +3 (C) +5 (D) +7 7. The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C (C) 2.7 g of At will react completely with how much mass of O ₂ to produce At ₂ O ₃ : (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (D) 3.2 g of oxygen (D) 3.4 g of oxygen (D) 3.5 g of oxygen (D) 3.4			Note:	Four possi	ble ans	wers A, E	B, C	and D to each
filling two or more circles will result in zero mark in that question. The number of bonds in oxygen molecule is: (A) One σ and one π (C) Three signal only When 50% reactants in a reversible reaction are converted into a product, the value of equilibrium constant K _c is: (A) 2 (B) 1 (C) 3 (D) 4 Pressure remaining constant, at which temperature the volume of a gas will become twice of what it is at 0°C: (A) 546°C (B) 200°C (C) 546 K (D) 273 K Molarity of pure water is: (A) 1 (B) 18 (C) 55.5 (D) 6 The wave number of the light emitted by a certain is 2 × 10° m². The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10² m (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C (C) 83°C (B) 69°C (C) 83°C (B) 69°C (C) 83°C (B) 69°C (C) 3.2 g of At will react completely with how much mass of O₂ to produce At₂O₃: (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (D) 3.2 g of oxygen (D) 2.4 g of oxygen (D) 75°C (D) 75°				correct, fill	that circ	le in front	of tha	at question with
that question. The number of bonds in oxygen molecule is: (A) One or and one π (B) One σ and two π (C). Three sigma only (D) Two sigma only (When 50% reactants in a reversible reaction are converted into a product, the value of equilibrium constant K _c is: (A) 2 (B) 1 (C) 3 (D) 4 Pressure remaining constant, at which temperature the volume of a gas will become twice of what it is at 0°C: (A) 546°C (B) 200°C (C) 546 K (D) 273 K Molarity of pure water is: (A) 1 (B) 18 (C) 55.5 (D) 6 The wave number of the light emitted by a certain is 2 × 10° m ⁻¹ . The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10° m The oxidation number of Ct in HCtO ₄ is: (A) +2 (B) +3 (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (D) 75°C 2.7 g of At will react completely with how much mass of O ₂ to produce At ₂ O ₃ : (A) 0.8 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.5 g of oxygen (D) 2.6 g of oxygen (D) 2.6 g of oxygen (D) 2.7 g of At will react constant volume (q _v) are related to each other: (A) q _p ° q _v (B) q _s q _v (C) q _s >q _v (D) q _p = q _s (D) q _s q		in .		Marker or F	Pen ink	in the ans	wer-b	ook. Cutting or
(A) One σ and one π (B) One σ and two π (C) Three sigma only 2. When 50% reactants in a reversible reaction are converted into a product, the value of equilibrium constant K _c is: (A) 2 (B) 1 (C) 3 (D) 4 3. Pressure remaining constant, at which temperature the volume of a gas will become twice of what it is at 0°C: (A) 546°C (B) 200°C (C) 546 K (D) 273 K 4. Molarity of pure water is: (A) 1 (B) 18 (C) 55.5 (D) 6 5. The wave number of the light emitted by a certain is 2 × 10° m². The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10² m The oxidation number of Ct in HCtO₄ is: (A) 4.2 (B) +3 (C) +5 (D) +7 7. The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C 3. 2.7 g of At will react completely with how much mass of O₂ to produce At₂O₃: (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (D) 4, 9° qv (D) q, 9° qv (C) q, 9° qv (D) q, 9° qv (C) q, 9° qv (D) q, 9° qv (C) Q, 9° qv (D) 1.5 10. The pH of 10°3 mol dm³ of an aqueous solution of H₂SO₄ is: (A) 3.0 (B) 2.7 (C) 2.0 (D) 1.5 11. Bohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these (C) NaNO₃ (D) Animal charcoal 3. (C) 4, 9NO₃ (D) Animal charcoal 4. (A) 1.5 (B) 8 g (C) 1 g (D) 16 (D) 16 (E) Which of the following is a pseudosolid: (A) 1.1 mg (B) 61ass (C) 1 g (D) H (D) H (E) Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI (D) HI (E) The enzyme used for hydrolysis of urea is: (A) 1.10 mg (B) 1.008 mg						II Cles Will	logui	m zero mark m
(C) Three sigma only (D) Two sigma only When 50% reactants in a reversible reaction are converted into a product, the value of equilibrium constant K _c is: (A) 2 (B) 1 (C) 3 (D) 4 Pressure remaining constant, at which temperature the volume of a gas will become twice of what it is at 0°C: (A) 546°C (B) 200°C (C) 546 K (D) 273 K Molarity of pure water is: (A) 1 (B) 18 (C) 55.5 (D) 6 The wave number of the light emitted by a certain is 2 × 10° m². The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (B) 500 m (C) 200 nm (B) 500 m (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C 2. 7 g of At will react completely with how much mass of O₂ to produce At₂O₃: (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 4.9 g of oxygen (C) 3.2 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 4.9 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 1.2 g of Oxygen (D) 2.4 g of oxygen (D) 2.4 g of oxygen (D) 3.6 g of oxygen (D) 3.7 g of At will react completely with how much mass of O₂ to produce At₂O₃: (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 1.3 g of oxygen (D) 1.5 g of oxygen (D) 2.5 g of oxygen (D) 3.6 g oxygen (D) 1.5 g or oxygen (D)								
 When 50% reactants in a reversible reaction are converted into a product, the value of equilibrium constant K₂ is: (A) 2 (B) 1 (C) 3 (D) 4 Pressure remaining constant, at which temperature the volume of a gas will become twice of what it is at 0°C: (A) 546°C (B) 200°C (C) 546 K (D) 273 K Molarity of pure water is: (A) 1 (B) 18 (C) 55.5 (D) 6 The wave number of the light emitted by a certain is 2 × 10° m³. The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10° m The oxidation number of Ct in HCtO₄ is: (A) +2 (B) +3 (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C 2.7 g of At will react completely with how much mass of O₂ to produce At₂O₃: (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 3.5 g of oxygen (C) 3.5 g of oxygen (D) 3.6 g of oxygen (C) 3.7 g of At will react completely with how much mass of one can other: (A) 4p° q. (B) q° q. (B) q° q. (C) q° p° q. (C) q° p° q. (D) q° p° q° q. (D) q° p° q. (D) q				(A) One σ ar (C) Three side	nd one π ama onlv	(B) One		
constant K _e is: (A) 2 (B) 1 (C) 3 (D) 4 Pressure remaining constant, at which temperature the volume of a gas will become twice of what it is at 0°C: (A) 546°C (B) 200°C (C) 546 K (D) 273 K Molarity of pure water is: (A) 1 (B) 18 (C) 55.5 (D) 6 The wave number of the light emitted by a certain is 2 × 10° m ⁻¹ . The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10° m The oxidation number of Ct in HCtO ₄ is: (A) +2 (B) +3 (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C (D) 33°C (D) 75°C (D) 2.7 g of At will react completely with how much mass of O ₂ to produce At ₂ O ₃ : (A) 0.8 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (D) 2.4 g of oxygen (D) 2.7 g of At will react constant volume (q _v) are related to each other: (A) q _P ° q _v (B) q _e <q<sub>v (C) q_e >q_v (C) q_e >q_v (D) 1.5 The pH of 10°3 mol dm³3 of an aqueous solution of H₂sO₄ is: (A) 3.0 (B) 2.7 (C) 2.0 (D) 1.5 The pH of 10°3 mol dm³3 of an aqueous solution of H₂sO₄ is: (A) 3.0 (B) 2.7 (C) 1.0 (D) 1.5 Bohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H₂sO₄ (B) Glass (C) AgNO₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO₃ (D) Naphthalein Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exertéd by oxygen is: (A) 1/3 (B) 8/9 (C) 1/9 (D) HI Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) 1.10 mg (B) 1.008 mg</q<sub>			2	When 50%	reactan	ts in a re	eversib	ole reaction are
(A) 2 (B) 1 (C) 3 (D) 4 Pressure remaining constant, at which temperature the volume of a gas will become twice of what it is at 0°C: (A) 546°C (B) 200°C (C) 546 K (D) 273 K Molarity of pure water is: (A) 1 (B) 18 (C) 55.5 (D) 6 The wave number of the light emitted by a certain is 2 × 10° m ⁻¹ . The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10° m The oxidation number of Ct in HCtO ₄ is: (A) +2 (B) +3 (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (B) 69°C (C) 32°G of At will react completely with how much mass of O ₂ to produce At ₂ O ₃ : (A) 0.8 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 4,0 and at constant volume (q _v) are related to each other: (A) q _P ° q _v (B) q _p <q<sub>v (C) q_p>q_v (D) q_s = \frac{4}{2} The pH of 10°-3 mol dm³ of an aqueous solution of H₂SO₄ is: (A) 3.0 (B) 2.7 (C) 2.0 (D) 1.5 (D) 18 ohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these (C) NaNO₃ (D) Animal charcoal (C) AgNO₃ (B) Glass (C) AgNO₃ (B) Glass (C) AgNO₃ (D) Animal charcoal (C) AgNO₃ (D) Animal charcoal (C) HBr (D) HI The enzyme used for hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg</q<sub>						oduct, the	value	e of equilibrium
Pressure remaining constant, at which temperature the volume of a gas will become twice of what it is at 0°C: (A) 546°C (B) 20°C (C) 546 K (D) 273 K Molarity of pure water is: (A) 1 (C) 55.5 (D) 6 The wave number of the light emitted by a certain is 2 × 10° m²¹. The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10° m (C) 200 nm (D) 5 × 10° m (E) 100 nm (D) 5 × 10° m (E) 100 nm (D) 5 × 10° m (E) 100 nm (E) 200 nm (E) 200 nm (E) 200 nm (E) 200 nm (E) 500 nm (E					· .	(B) 1		
volume of a gas will become twice of what it is at 0°C: (A) 546°C (B) 200°C (C) 546 K (D) 273 K Molarity of pure water is: (A) 1 (B) 18 (C) 55.5 (D) 6 The wave number of the light emitted by a certain is 2 × 10° m²¹. The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10² m The oxidation number of Ct in HCtO₄ is: (A) +2 (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C (C) 83°C (D) 75°C (C) 83°C (D) 75°C (C) 83°C (D) 75°C (C) 3.2 g of At will react completely with how much mass of O₂ to produce At₂O₃: (A) 0.8 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 4, g of oxygen (C) 3, g of oxygen (D) 4, g of oxygen (C) 4, g of oxygen (D) 5 × 10² m The pH of 10°³ mol dm³ of an aqueous solution of H₂SO₄ is: (A) 3.0 (B) 2.7 (C) 2.0 (D) 1.5 Bohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H₂SO₄ (C) NaNO₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO₃ (D) Naphthalein Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) $\frac{1}{3}$ (B) $\frac{8}{9}$ (C) $\frac{1}{9}$ (D) Hi The enzyme used for hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Hremass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg					malalaa a		which	temperature the
(A) 546°C (B) 200°C (C) 546 K (D) 273 K Molarity of pure water is: (A) 1 (B) 18 (C) 55.5 (D) 6 The wave number of the light emitted by a certain is 2 × 10° m². The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10° m The oxidation number of Ct in HCtO ₄ is: (A) +2 (B) +3 (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C (C) 83°C (D) 75°C (C) 3.2 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.5 g of oxygen (C) 3.2 g of oxygen (D) 2.5 g of oxygen (C) 3.2 g of oxygen (D) 2.5 g of oxygen (C) 3.2 g of oxygen (D) 2.5 g of oxygen (C) 3.2 g of oxygen (D) 2.5 g of oxygen (D) 3.6 g of oxygen (D) 4.7 g of oxygen (D) 4.8 g of oxygen (D) 4.8 g oxygen (D) 4.9 g oxygen (D) 5.9 g oxygen (D) 5.0 g oxygen (D) 5.0 g oxygen (D) 6.0 g oxyge			2.	volume of a	gas will b	ecome twice	ce of w	hat it is at 0°C:
Molarity of pure water is: (A) 1 (B) 18 (C) 55.5 (D) 6 The wave number of the light emitted by a certain is 2 × 10 ⁶ m ⁻¹ . The wavelength of this light will be: (A) 500 nm (C) 200 nm (D) 5 × 10 ⁷ m The oxidation number of Ct in HCtO₄ is: (A) +2 (B) +3 (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C 2.7 g of At will react completely with how much mass of O₂ to produce At₂O₃: (A) 0.8 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 4, g of oxyg				(A) 546°C		(B) 200°	С	
(A) 1 (B) 18 (C) 5.5.5 (D) 6 The wave number of the light emitted by a certain is 2 × 10 ⁶ m ⁻¹ . The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10 ⁷ m The oxidation number of Ct in HCtO ₄ is: (A) +2 (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C 2.7 g of At will react completely with how much mass of O ₂ to produce At ₂ O ₃ : (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 3.2 g of oxygen (C) 3.2 g of oxygen (D) 3.2 g of oxygen (C) 3.2 g of oxygen (D) 3.4 g of oxygen (C) 3.2 g of oxygen (D) 3.4 g of oxygen (D) 4.6 g oxygen (D)				(C) 546 K	100	(D) 2/3	N.	
(C) 55.5 (D) 6 The wave number of the light emitted by a certain is 2 × 10 ⁶ m ⁻¹ . The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10 ⁷ m The oxidation number of Ct in HCtO₄ is: (A) +2 (B) +3 (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C (C) 83°C (D) 75°C (C) 83°C (D) 75°C (C) 32°C (D) 4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 4 g of oxygen (C) 3.2 g of oxygen (D) 4 g of oxygen (C) 3.2 g of oxygen (D) 4 g of oxygen The pH of 10° mol dm³ of an aqueous solution of H₂SO₄ is: (A) 3.0 (B) 2.7 (C) 2.0 (D) 1.5 Bohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H₂SO₄ (B) Silica gel (C) NaNO₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO₃ (D) Naphthalein Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) 1/3 (B) 8/9 (C) 1/9 (D) 16/17 Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase (T) The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg		4.	Molar	ity of pure w				
The wave number of the light emitted by a certain is 2 × 10° m ⁻¹ . The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10° m (C) 200 nm (D) 5 × 10° m (The oxidation number of Ct in HCtO₄ is: (A) +2 (B) +3 (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C (C) 83°C (D) 75°C (D) 75°C (E) 83°C (D) 84°C (E)				. 5	٠,			
10 ⁶ m ⁻¹ . The wavelength of this light will be: (A) 500 nm (B) 500 m (C) 200 nm (D) 5 × 10 ⁷ m The oxidation number of Ct in HCtO₄ is: (A) +2 (B) +3 (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C 2.7 g of At will react completely with how much mass of O₂ to produce At₂O₃: (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 4.9 g of oxygen (C) 3.2 g of oxygen (D) 4.9 g of oxygen (C) 3.9 g of oxygen (D) 4.9 g of oxygen (C) 3.9 g of oxygen (D) 4.9 g of oxygen (C) 3.9 g of oxygen (D) 4.9 g of oxygen (C) 3.9 g of oxygen (D) 4.9 g of oxygen (C) 3.9 g of oxygen (D) 4.9 g oxygen (C) 3.9 g of oxygen (D) 4.9 g oxygen (C) 3.9 q oxygen (D) 4.9 g oxygen (C) 4.9 q oxygen (D) 4.9 g oxygen (C) 4.9 q oxygen (D) 4.9 g oxygen (C) 2.0 (D) 1.5 Beat model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H₂SO₄ (B) Silica gel (C) NaNO₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) Hg (D) Hi Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) 1,0 retase (C) Lipase (D) Zymase (C) Lipase (D) Zymase (C) Lipase (D) Zymase (D) Lipase (D) Zymase (D) Lipase (D) Zymase (D) Lipase (D) Zymase		5.		/ave number			by a d	certain is 2 ×
(C) 200 nm (D) 5 × 10 ⁷ m The exidation number of Ct in HCtO₄ is: (A) +2 (B) +3 (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C 2.7 g of At will react completely with how much mass of O₂ to produce At₂O₃: (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen For a given process, the heat changes at constant pressure (q₀) and at constant volume (q₀) are related to each other: (A) q₀ = q₀ (D) q₀ = q₀ (C) q₀ >q₀ (D) q₀ = q₀ (C) q₀ >q₀ (D) q₀ = q₀ (C) 2.0 (D) 1.5 The pH of 10⁻³ mol dm⁻³ of an aqueous solution of H₂SO₄ is: (A) 3.0 (B) 2.7 (C) 2.0 (D) 1.5 Bohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H₂SO₄ (B) Silica gel (C) NaNO₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO₃ (D) Naphthalein Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) 1/3 (B) 8/9 (C) 1/9 (D) H Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) (HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg			10 ⁶ m	⁻¹ . The wave	elength o	f this light v	vill be	1
The oxidation number of Ct in HCtO ₄ is: (A) +2 (B) +3 (C) +5 (D) +7 The boiling point of water at the top of Mount Everest is: (A) 59°C (B) 69°C (C) 83°C (D) 75°C 2. 7 g of At will react completely with how much mass of O ₂ to produce At ₂ O ₃ : (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 4.9 g of oxygen (C) 3.2 g of oxygen (D) 4.9 g of oxygen (C) 3.2 g of oxygen (D) 4.9 g of oxygen (C) 3.2 g of oxygen (D) 4.9 g of oxygen (C) 3.2 g of oxygen (D) 4.9 g of oxygen (C) 3.2 g of oxygen (D) 4.9 g of oxygen (C) 3.2 g of oxygen (D) 4.9 g of oxygen (C) 3.2 g of oxygen (D) 4.9 g of ox	4				. (D) 500 m) 5 × 10 ⁷ m		
The boiling point of water at the top of Mount Everest is: (A) 59°C (C) 83°C (D) 75°C (C) 83°C (D) 75°C (E) 83°C (D) 75°C (E) 83°C (E) 84°C (E) 84		6.			ber of C	l in HClO₄		
The boiling point of water at the top of Mount Everest is: (A) 59°C (C) 83°C (D) 75°C (C) 83°C (D) 75°C (C) 83°C (D) 75°C (D) 75°C (E) 2.7 g of At will react completely with how much mass of O2 to produce At2O3: (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (E) 3.2 g of oxygen (E) 3.2 g of oxygen (E) 4 g of oxygen (E) 6 g of oxygen (E) 7 g of oxygen (E) 9 g of oxygen (D) 9 g of oxygen (D) 1 6 g of oxygen (D) 1 6 g of oxygen (E) 1 6 g of oxygen (D) 2 g of o	•		, ,				*	
is: (A) 59°C (C) 83°C (D) 75°C 2.7 g of At will react completely with how much mass of O2 to produce At2O3: (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (E) 3.2 g of oxygen (D) 2.4 g of oxygen (E) 3.2 g of oxygen (D) 2.4 g of oxygen (E) 3.2 g of oxygen (D) 4 g of oxygen (E) 4 g of oxygen (D) 5 g of oxygen (D) 6		7.					of Mo	ount Everest
(C) 83°C (D) 75°C 2.7 g of At will react completely with how much mass of O ₂ to produce At ₂ O ₃ : (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (E) 2.4 g of oxygen (E) 3.2 g of oxygen (E) 2.4 g of oxygen (E) 3.2 g of oxygen (E) 2.4 g of oxygen (E) 4 g of oxygen (E) 6 x g of oxygen (C) 2 g of oxygen (E) 6 x g of oxygen (C) 2 g of oxygen (E) 6 x g of oxygen (C) 2 g of oxygen (C) 2 g of oxygen (C) 2 g of oxygen (D) 2 g of oxygen (C) 2			is:					
2.7 g of At will react completely with how much mass of O_2 to produce At_2O_3 : (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (For a given process, the heat changes at constant pressure (q_p) and at constant volume (q_v) are related to each other: (A) $q_p = q_v$ (B) $q_p < q_v$ (C) $q_p > q_v$ (D) $q_p = \frac{q_v}{2}$ The pH of 10^{-3} mol dm ⁻³ of an aqueous solution of H_2SO_4 is: (A) 3.0 (B) 2.7 (C) 2.0 (D) 1.5 Bohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H_2SO_4 (B) Silica gel (C) NaNO ₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO ₃ (D) Naphthalein Requal masses of methane and oxygen are mixed in an empty container at 25° C. The fraction of total pressure exerted by oxygen is: (A) $\frac{1}{3}$ (B) $\frac{8}{9}$ (C) $\frac{1}{9}$ (D) $\frac{16}{17}$ Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase								
 (A) 0.8 g of oxygen (B) 1.6 g of oxygen (C) 3.2 g of oxygen (D) 2.4 g of oxygen (D) 3.2 g of oxygen (D) 2.4 g of oxygen (D) 3.2 g of oxygen (D) 2.4 g of oxygen (D) 3.2 g of oxygen (D) 2.4 g of oxygen (D) 3.2 g of oxygen (D) 3.2 g of oxygen (D) 3.2 g of oxygen (D) 4 g of 2 g of oxygen (D) 4 g oxygen (D) 5 g oxygen (D) 6 g oxygen (D) 7 g oxyge		8	2.7 g	of At will rea	ct compl	65 3000 1000	now m	uch mass of
(C) 3.2 g of oxygen (D) 2.4 g of oxygen process, the heat changes at constant pressure (q _p) and at constant volume (q _v) are related to each other: (A) q _p = q _v (B) q _p < q _v (C) q _p > q _v (D) q _p = q _v (C) q _p > q _v (D) q _p = q _v (C) 2.0 (D) 1.5 11 Bohr model of atom is contradicted by: (A) 13.0 (B) 2.7 (C) 2.0 (D) 1.5 12 Bohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these (C) NaNO ₃ (D) Animal charcoal (A) H ₂ SO ₄ (B) Silica gel (C) NaNO ₃ (D) Animal charcoal (A) NaBr (B) Glass (C) AgNO ₃ (D) Naphthalein (A) NaBr (B) Glass (C) AgNO ₃ (D) Naphthalein (A) Table (C) 1/9 (D) 16/17 (C) 1/9 (D) 16/17 (D) 16/17 (E) Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI (B) HCt (C) HBr (D) HI (C) Lipase (D) Zymase (C) Lipase (D) Zymase (D) 2ymase (C) 1.10 mg (B) 1.008 mg			200			10		
For a given process, the heat changes at constant pressure (q _p) and at constant volume (q _v) are related to each other: (A) q _p = q _v (B) q _p < q _v (C) q _p > q _v (D) q _p = q _v (E) q _p < q _v (D) q _p = q _v (E) q _v			(A) 0.8 (C) 3.2	3 g of oxyger 2 a of oxvaei	n (B) n (D)	2.4 g of o	kygen	
each other: (A) $q_P = q_V$ (C) $q_P > q_V$ (D) $q_P = \frac{q_V}{2}$ 10 The pH of 10^{-3} mol dm ⁻³ of an aqueous solution of H_2SO_4 is: (A) 3.0 (B) 2.7 (C) 2.0 (D) 1.5 11 Bohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these 12 The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H_2SO_4 (B) Silica gel (C) NaNO ₃ (D) Animal charcoal 13 Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO ₃ (D) Naphthalein 14 Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) $\frac{1}{3}$ (B) $\frac{8}{9}$ (C) $\frac{1}{9}$ (D) $\frac{16}{17}$ 15 Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI 16 The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase 17 The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg		91	For a	given proc	ess, the	heat cha	nges	at constant
(A) $q_P = q_V$ (B) $q_p < q_V$ (C) $q_p > q_V$ (D) $q_p = \frac{q_V}{2}$ 10 The pH of 10^{-3} mol dm ⁻³ of an aqueous solution of $H_2 SO_4$ is: (A) 3.0 (B) 2.7 (C) 2.0 (D) 1.5 11 Bohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these (D) All of the substance used for decolourization of undesirable colour in a crystalline substance is: (A) H_2SO_4 (B) Silica gel (C) NaNO ₃ (D) Animal charcoal 12 Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO ₃ (D) Naphthalein 12 Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) $\frac{1}{3}$ (B) $\frac{8}{9}$ (C) $\frac{1}{9}$ (D) $\frac{16}{17}$ 15 Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI 16 The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase (D) Z					at consta	int volume	(q _v) a	re related to
The pH of 10 ⁻³ mol dm ⁻³ of an aqueous solution of H ₂ SO ₄ is: (A) 3.0 (B) 2.7 (C) 2.0 (D) 1.5 Bohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H ₂ SO ₄ (B) Silica gel (C) NaNO ₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO ₃ (D) Naphthalein Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) \frac{1}{3} (B) \frac{8}{9} (C) \frac{1}{9} (D) \frac{16}{17} Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg					(B)	q _p <q<sub>v</q<sub>		* **
The pH of 10 ⁻³ mol dm ⁻³ of an aqueous solution of H ₂ SO ₄ is: (A) 3.0 (B) 2.7 (C) 2.0 (D) 1.5 Bohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H ₂ SO ₄ (B) Silica gel (C) NaNO ₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO ₃ (D) Naphthalein Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) \frac{1}{3} (B) \frac{8}{9} (C) \frac{1}{9} (D) \frac{16}{17} Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg			(C) q _p	>q _v	(D)	$q_p = \frac{q_v}{2}$		· · ·
H ₂ SO ₄ is: (A) 3.0 (C) 2.0 (D) 1.5 11 Bohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H ₂ SO ₄ (B) Silica gel (C) NaNO ₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO ₃ (D) Naphthalein 14 Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) 1/3 (B) 8/9 (C) 1/9 (D) 16/17 15 Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI 16 The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg		10	The p	oH of 10 ^{−3} r		2	ueous	solution of
(C) 2.0 (D) 1.5 Bohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H ₂ SO ₄ (B) Silica gel (C) NaNO ₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO ₃ (D) Naphthalein Requal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) \frac{1}{3} (B) \frac{8}{9} (C) \frac{1}{9} (D) \frac{16}{17} Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg			H₂SO.	4 is :				
Bohr model of atom is contradicted by: (A) Plank's quantum theory (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H ₂ SO ₄ (B) Silica gel (C) NaNO ₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO ₃ (D) Naphthalein Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) \frac{1}{3} (B) \frac{8}{9} (C) \frac{1}{9} (D) \frac{16}{17} Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg								
 (B) Dual nature of matter (C) Heisenberg's uncertainty principle (D) All of these The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H₂SO₄ (B) Silica gel (C) NaNO₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO₃ (D) Naphthalein Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) 1/3 (B) 8/9 (C) 1/9 (D) 16/17 Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg 	·	1					<i>i</i> :	
 (C) Heisenberg's uncertainty principle (D) All of these The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H₂SO₄ (B) Silica gel (C) NaNO₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO₃ (D) Naphthalein Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) 1/3 (B) 8/9 (C) 1/9 (D) 16/17 Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg 		1				1		
 (D) All of these The substance used for decolourization of undesirable colour in a crystalline substance is: (A) H₂SO₄ (B) Silica gel (C) NaNO₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO₃ (D) Naphthalein Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) 1/3 (B) 8/9 (C) 1/9 (D) 16/17 Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg 	1	Į.				ty principle		×
colour in a crystalline substance is: (A) H ₂ SO ₄ (B) Silica gel (C) NaNO ₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO ₃ (D) Naphthalein Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) \frac{1}{3} (B) \frac{8}{9} (C) \frac{1}{9} (D) \frac{16}{17} Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg	,	E-mark	(D) AI	l of these				undosirable
 (A) H₂SO₄ (B) Silica gel (C) NaNO₃ (D) Animal charcoal Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO₃ (D) Naphthalein Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) 1/3 (B) 8/9 (C) 1/9 (D) 16/17 Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg 		L.					1011 01	undesirable
Which of the following is a pseudosolid: (A) NaBr (B) Glass (C) AgNO ₃ (D) Naphthalein Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) $\frac{1}{3}$ (B) $\frac{8}{9}$ (C) $\frac{1}{9}$ (D) $\frac{16}{17}$ Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg		-	(A) H ₂	SO₄	(B)	Silica gel		,
(A) NaBr (C) AgNO ₃ (D) Naphthalein Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) \frac{1}{3} (B) \frac{8}{9} (C) \frac{1}{9} (D) \frac{16}{17} Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg								
empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) $\frac{1}{3}$ (B) $\frac{8}{9}$ (C) $\frac{1}{9}$ (D) $\frac{16}{17}$ 15 Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI 16 The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase 17 The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg			(A) Na	aBr	(B)	Glass		
empty container at 25°C. The fraction of total pressure exerted by oxygen is: (A) $\frac{1}{3}$ (B) $\frac{8}{9}$ (C) $\frac{1}{9}$ (D) $\frac{16}{17}$ 15 Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI 16 The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase 17 The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg			(C) A	gNO₃ massas of l				mived in an
exerted by oxygen is: (A) $\frac{1}{3}$ (B) $\frac{8}{9}$ (C) $\frac{1}{9}$ (D) $\frac{16}{17}$ 15 Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI 16 The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase 17 The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg		L	Equal	Illasses of I	nemane	and oxyge	iii aic	mixed in an
exerted by oxygen is: (A) $\frac{1}{3}$ (B) $\frac{8}{9}$ (C) $\frac{1}{9}$ (D) $\frac{16}{17}$ 15 Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI 16 The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase 17 The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg			en	npty contain	er at 25°	C. The frac	ction o	f total pressure
Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI 16 The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase 17 The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg			ex	ertéd by oxy				
Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI 16 The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase 17 The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg			(A	$\frac{1}{3}$		(B) $\frac{8}{9}$		
Which of the hydrogen halides has the highest percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI 16 The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase 17 The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg						(D) 16		
percentage of ionic character: (A) HF (B) HCt (C) HBr (D) HI 16 The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase 17 The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg				3	V			g g
(A) HF (B) HCt (C) HBr (D) HI 16 The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase 17 The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg							s ha	s the highest
(C) HBr (D) HI The enzyme used for hydrolysis of urea is: (A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg			(A) HF	onic ona			
(A) Invertase (B) Urease (C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg					20d f=: 1			ia .
(C) Lipase (D) Zymase The mass of two moles of electrons is: (A) 1.10 mg (B) 1.008 mg								15.
(A) 1.10 mg (B) 1.008 mg			(C) Lipase		(D) Zymas	e	
					o moles			
		_			S. Carlotte and C. Carlotte an	This could not explore any or	_	

	. (Chemistry	Lahore Board 2015	Inter Part-I Group – II			
	Tim	e: 3.10 hrs	Essay Type	Marks = 83			
	SECTION – I Write short answers to any EIGHT (8) question						
	(i)	different phys	opes? Why they have sar ical properties?				
	(ii) (iii) Define molec	oichiometric assumptions				
	(iv) Define sublim	s empirical formula? ation and partition law. petween adsorption chror	matography and			
	(vi	partition chror					
	(vi	different units i) Write down ar	ny two applications of plas	sma.			
	(vi) Differentiate	of candle is a spontaneous process. Justify it. tiate between endothermic and exothermic				
	(x)		of mass action. les of equilibrium constant helps to predict				
	(xi	ic buffer can be					
		prepared?					
3.	(i)	Write short ans What is isomorp	wers to any EIGHT (8) q hism? Give an example.				
	. ,	as well as comp	erature is the term used ounds. Explain.				
		of water at same	ssure of diethyl ether is hig e temperature. Give reason e-dipole forces of attract	n.			
		with an example					
	(vi)	its mathematical Write down two	form. defects of Rutherford's Ato	omic Model.			
			distribution of 15P and 66C were discovered by Chadw				
		equation of nucl	ear reaction involved. tage ionic character of a c				
		is determined by Differentiate be	dipole moment? htween atomic orbital ar				
	(xi)		e of bonding affects	solubility of			
	(xii)		etry of NH ₃ molecule on	the basis of			
4	(i)	Write short ans	swers to any SIX (6) ques	stions: 12			
	(i)	compared to on	e molar solution of urea bl blute is same. Justify it.	ut the number			
	(ii)	What is molarit	y? Calculate the molarity ams of glucose (C ₆ H ₁₂ O ₆)	of a solution in 250 cm ³ of			
	(iii)	solution. Differentiate bet	ween hydration and hydro	olysis.			
	(iv)	of sodium chlori	stry of electrolysis of aquide.	leous solution			
	1 1	Calculate oxida	ysis? Give example. ation number of Mn in	KMnO ₄ and			
	(vii)	Define half life order of reaction					
	(viii) (ix)	What is specific Enzymes are sp	rate constant or velocity of pecific in action. Justify.	constant?			
	No	ote: Attempt any	SECTION-II THREE questions.				
		(a) What is H-I compounds.	Bonding? Discuss H-Bond	4			
		solids NH ₄ C	an be prepared by heating and Ca(OH)2. If a mixture solid is heated then calculated	e containing 100			
		grams of Nh	le, H = 1 gm/mole, Ca = 4	= 12 g/mole, N			
	6.	35.5 gm/mol (a) Explain Dali	le, O = 16 gm/mole) ton's law of partial pressu	4			
		(b) Write down	in breathing process. the properties of cathode ra				
	7.	MOT and pro	amagnetic behaviour of O ₂ ove MOT is superior to other ar heat of combustion? How	er theories. 4			
	8.	by bomb cale		4			
	_	as catalyst. I (b) Ca(OH) ₂ is a	Mention the characteristics a sparingly soluble compou	of enzymes. 4 and Its solubility			
		product is Ca(OH) ₂ . (At	6.5×10^{-6} . Calculate the omic mass: Ca = 40)	ne solubility of 4			
	9.	of a solution	al explanation for elevation	4			
		solution of N	electroi, sis of molten Nac aCt.	2 and aqueous 4			
	No	te: (i) Attempt a	TION — III (Practical Part) iny THREE questions.				
		with mole ra	standard solution, cher atio, indicator with end po ed readings with calcula	oint, procedure			
		C, D, and E.		1,1,1,1,1 diagram and			
	A.	Prepare pure	or Part A and B. sample of NaCt by commo	1,1,3 on ion effect. 5			
	B.	Separate the chromatogra		Cd ²⁺ ions by 5			
	C.	6.3 g of sam		dissolved per			
		dm ³ of soluti	COOH on. Determine the value o	f"Y" /number			
	D.	water molecu The given	iles) volumetrically.	f "X" (number of 5 rtially oxidized			
	_	FeSO₄.7H₂O percentage p	dissolved per dm ³ . urity of the sample.	Find out the 5			
	E	Na ₂ S ₂ O ₃ .5H ₂ (olution contains 30.0 grains of and Na ₂ S ₄ O ₆ dissolved	ns a mixture of per dm³. Find			
	_	out the perce	ntage of each component	volumetrically 5			