10th Class 2017

Math (Science)	Group-I	PAPER-II
Time: 20 Minutes	(Objective Type)	

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

- An equation which remains unchanged when x is replaced by $\frac{1}{x}$ is called a / an:
 - (a) Exponential equation
 - (b) Reciprocal equation 1/
 - (c) Radical equation
 - (d) Quadratic equation
- If α , β are the roots of $3x^2 + 5x 2 = 0$, then $\alpha + \beta$ is: 2-
 - (a) $\frac{5}{3}$

(b) $\frac{3}{5}$

- (c) $\frac{-5}{3}\sqrt{}$
- $(d) -\frac{2}{3}$
- Cube roots of -1 are:
 - (a) -1, $-\omega$, $-\omega^2 \sqrt{(b)} -1$, ω , $-\omega^2$
 - (c) -1, $-\omega$, ω^2 (d) 1, $-\omega$, $-\omega^2$
- The fourth proportional w of x: y:: v: w is:

(b) $\frac{vy}{x} \sqrt{x}$

- $(d) \frac{x}{vv}$
- If a: b = x: y, then alternando property is:
 - (a) $\frac{a}{x} = \frac{b}{v} \sqrt{\frac{a}{x}}$
- (b) $\frac{a}{b} = \frac{x}{v}$
- (c) $\frac{a+b}{b} = \frac{x+y}{y}$

10th Class 2017		
Math (Science)	Group-I	PAPER-II
Time: 2.10 Hours	(Subjective Type)	

(Part-I)

2. Write short answers to any SIX (6) questions: 12

(i) Write the name of any two methods for solving a quadratic equation.

The name of any two methods for solving a quadratic equation are:

1. Factorization Method.

2. Completing Square Method.

(ii) Solve:

$$x^2 + 2x - 2 = 0$$

Ans Here, a = 1, b = 2, c = -2

We may solve the above equation through quadratic formula, so

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-2 \pm \sqrt{(2)^2 - 4(1)(-2)}}{2(1)}$$

$$= \frac{-2 \pm \sqrt{4 + 8}}{2}$$

$$= \frac{-2 \pm \sqrt{12}}{2}$$

$$= \frac{-2 \pm 2\sqrt{3}}{2}$$

$$= -1 \pm \sqrt{3}$$

(iii) Evaluate: $(1-3w-3w^2)^5$

Ans Given:

$$(1 - 3w - 3w^2)^5$$

By taking common, we get
= $[1 - 3(w + w^2)]^5$

	VIIIIIIIIIIIIIII O	Mathematics 10th (Sc. Group)
TIPS	Solved Up-to-Date Papers 80	THE PARTITION OF THE PA
-		
6-	$\frac{3\pi}{4} \text{ radian} =:$	150°
	(a) 115° (d)	150° 135° √
	(c) 30° The set having only on (b)	element is called:
7-	The set having only on	Power set
	(a) Null set	Subset
8-	If A B, then A B is 6) B
	(a) A (d	101
	(c) B - A A frequency polygon is	s a many sided:
9-	A frequency pory 90. (b) Rectangle
	(a) Closed) Square
	(c) Circle (a) sec ² $\theta =$:	
10-		1) $1 + \tan^2 \theta $
	(a) $1 - \sin^2 \theta$ (b) (c) $1 + \cos^2 \theta$ (c)	1) $1 - \tan^2 \theta$
44	Radii of a circle are:	
11-	(a) Double of the diame	eter
	(b) All unequal	
	(c) Half of any chord (c	d) All equal 1/
12-	A tangent line interse	cts the circle at:
		b) Two points
	(c) Single point 1/ (
13-		incongruent central angles of a
	circle are always:	
	(a) Congruent (c) Perpendicular (d)	b) Parallel d) Incongruent 1/
14-		meter of a circle is how many
	times the radius of the	
		b) 2 1/
		d) 4
15-	The tangent and rad	ius of a circle at the point of
	contact are: (a) Parallel (
		b) Not perpendicular
	(c) Perpendicular 1/ (d) Not parallel

 $W + W^2 = -1$

As we know that:

$$= [1 - 3(-1)]^5$$

$$= [1 + 3)^5$$

$$= 4^5$$

$$= 1024$$

(iv) Evaluate:

$$-\omega^{37}+\omega^{38}-5$$

Ans Given:

$$\omega^{37} + \omega^{38} - 5$$

$$= \omega^{36} \cdot \omega + \omega^{36} \cdot \omega^{2} - 5$$

$$= \omega^{36} (\omega + \omega^{2}) - 5$$

$$= (\omega^{3})^{12} (-1) - 5$$

$$= -1 - 5$$

$$= -6$$

(v) Without solving find the sum and the product of roots of quadratic equation: $3x^2 + 7x - 11 = 0$

Here, a = 3, b = 7, c = -11Sum of the roots:

$$S = \alpha + \beta = \frac{-b}{a} = \frac{-7}{3}$$

Product of the roots:

$$P = \alpha \beta = \frac{c}{a} = \frac{-11}{3}$$

(vi) Write the quadratic equation having the roots: -1, -7

Ans Sum of the roots:

$$\alpha + \beta = -1 + (-7) = -8$$

Product of the roots:

$$\alpha\beta = (-1)(-7) = 7$$

Thus the quadratic equation will be:

$$x^{2} - Sx + P = 0$$

 $x^{2} - (-8)x + 7 = 0$
 $x^{2} + 8x + 7 = 0$

(vii) Define direct variation.

Ans If two quantities are related in such a way that increase (decrease) in one quantity causes increase

83

(decrease) in the other quantity then this variation is called direct variation.

(viii) Find the fourth proportional to 8, 7, 6.

Let the fourth proportional is x:

$$8:7::6:x$$

 $8 \times x = 7 \times 6$
 $8 \times x = \frac{42}{8}$
 $x = \frac{21}{4}$

Find x if 6:x::3:5.

$$x \times 3 = 6 \times 5$$

$$x = \frac{6 \times 5}{3}$$

$$x = \frac{30}{3}$$

x = 10

3. Write short answers to any SIX (6) questions: 12

(i) Define a rational fraction.

An expression of the form $\frac{N(x)}{D(x)}$, where N(x) and

D(x) are polynomials in x with real coefficients and $D(x) \neq 0$, is called a rational fraction.

(ii) Resolve $\frac{1}{x^2-1}$ into partial fraction.

Ans
$$\frac{1}{x^2 - 1} = \frac{1}{(x + 1)(x - 1)}$$

$$\frac{1}{x^2 - 1} = \frac{A}{x + 1} + \frac{B}{x - 1}$$

$$1 = \frac{A}{(x + 1)}(x^2 - 1) + \frac{B}{(x - 1)}(x^2 - 1)$$

$$1 = A(x - 1) + B(x + 1)$$
Put
$$x = 1 \text{ in (i)}$$

$$1 = A(1 - 1) + B(1 + 1)$$
(i)

$$1 = 0 + 2B$$
 $2B = 1$
 $B = \frac{1}{2}$

Similarly, put
$$x = -1$$
 in (i),
 $1 = A(-1 - 1) + B(-1 + 1)$
 $1 = A(-2) + 0$

$$1 = -2A$$

$$-2A = 1$$

$$A = \frac{-1}{2}$$

Finally, by putting the values in (i), we have

$$\frac{1}{x^2 - 1} = \frac{1}{2(x - 1)} - \frac{1}{2(x + 1)}$$

(iii) Define subset.

If A and B are two sets and every element of A is a member of B then A is called subset of B.

(iv) If $L = \{a, b, c\}, M = \{3, 4\}$ then find $L \times M$.

Ans $L \times M = \{a, b, c\} \times \{3, 4\}$

 $L \times M = \{(a, 3), (a, 4), (b, 3), (b, 4), (c, 3), (c, 4)\}$

(v) Find domain and range of the binary relation, $R = \{(1, 1), (2, 2), (3, 3), (4, 4)\}.$

Ans Dom R = {1, 2, 3, 4} Range R = {1, 2, 3, 4}

(vi) If (2a + 5, 3) = (7, b - 4), find a, b.

Ans By comparing the values, we get

2a+5=7; 3=b-4 2a=7-5; 3+4=b2a=2; 7=b

 $a = \frac{2}{2} \qquad ; \Rightarrow \boxed{b = 7}$

a = 1

Thus, $\{a = 1, b = 7\}$

Write two properties of arithmetic mean.

Two properties of arithmetic mean are:
Mean is affected by change in origin.

Sum of the deviations of the variable X from its mean is always zero.

(viii) Define mode.

Mode is defined as the most frequent value in the

The sugar contents for a random sample of 6 packs of juices of a certain brand are found to be 2.3, 2.7, 2.5, 2.9, 3.1 and 1.9 milligram, find the median.

Arranging the values by increasing order 1.9, 2.3, 2.5, 2.7, 2.9, 3.1.

Median = $\frac{1}{2}$ [size of (3rd + 4th) values] = $\frac{2.5 + 2.7}{2}$ = 2.6 Milligram

4. Write short answers to any SIX (6) questions: 12

(i) Define radian measure of an angle.

The angle subtended at the centre of the circle by an arc, whose length is equal to the radius of the circle is called one Radian.

(ii) Convert 15° to radian.

Ans $15^{\circ} = 15 \times \frac{\pi}{180} \text{ radian}$ $= \frac{\pi}{12} \text{ radian}$

(iii) Find 'r', when l = 56 cm, $\theta = 45^{\circ}$.

Ans l = 56 cm, $\theta = 45^{\circ}$, r = ?

By converting the θ into radians

 $45^{\circ} = 45 \times \frac{\pi}{180} \text{ radian}$

$$=\frac{\pi}{4}$$
 radians

We have,

$$l = r\theta$$

$$r = \frac{l}{\theta}$$

$$r = \frac{56}{\frac{\pi}{4}}$$

$$= \frac{56 \times 4}{\pi}$$

$$r = 71.27 \text{ cm}$$

What is meant by zero dimension? (iv)

Projection of a vertical line segment CD on a line segment AB is a point on AB which is of zero dimension.

Define chord of a circle.

The joining of any two points on the circumference of the circle is called chord of a circle.

Define tangent to a circle.

Ans A tangent to a circle is the straight line which touches the circumference at one point only.

What is meant by sector of a circle?

The sector of a circle is an area bounded by any two radii and the arc intercepted between them.

Define circumangle.

Ans A circumangle is subtended between any two chords of a circle, having common point on its circumference.

Define inscribed circle.

Ans A circle which touches the three sides of a triangle internally is known as inscribed circle.

87

NOTE: Attempt THREE (3) questions in all. But question No. 9 is Compulsory.

Q.5.(a) Solve the equation by completing square: (4) $11x^2 - 34x + 3 = 0$

Ans

$$11x^{2} - 34x = -3$$

$$x^{2} - \frac{34}{11}x = \frac{-3}{11}$$

Adding $\left(\frac{17}{11}\right)^2$ on both sides

$$x^{2} - 2(x) \left(\frac{17}{11}\right) + \left(\frac{17}{11}\right)^{2} = \frac{-3}{11} + \left(\frac{17}{11}\right)^{2}$$

$$\left(x - \frac{17}{11}\right)^{2} = \frac{-3}{11} + \frac{289}{121}$$

$$= \frac{-33 + 289}{121}$$

$$= \frac{256}{121}$$

Taking square root on both sides, we have

$$x - \frac{17}{11} = \pm \frac{16}{11}$$

$$x = \frac{17}{11} \pm \frac{16}{11}$$

$$x = \frac{17}{11} + \frac{16}{11} \quad ; \quad x = \frac{17}{11} - \frac{16}{11}$$

$$= \frac{17 + 16}{11} \quad ; \quad = \frac{17 - 16}{11}$$

$$= \frac{33}{11} \quad ; \quad x = \frac{1}{11}$$

$$x = 3$$

If α , β are the roots of equation $lx^2 + mx + n = 0$, $(l \neq 0)$ then find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$. (4)

Ans
$$a = l$$
, $b = m$, $c = n$

$$\alpha + \beta = \frac{-b}{a} = \frac{-m}{l}$$

$$\alpha\beta = \frac{c}{a} = \frac{n}{l}$$

$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2}$$

$$= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2}$$

$$= \frac{\left(\frac{-m}{l}\right)^2 - 2\left(\frac{n}{l}\right)}{\left(\frac{n}{l}\right)^2}$$

$$= \frac{\frac{m^2}{l^2} - \frac{2n}{l}}{\frac{n^2}{l^2}}$$

$$= \frac{\frac{m^2 - 2ln}{l^2}}{\frac{n^2}{l^2}}$$

$$= \frac{1}{l} (m^2 - 2ln)$$

Q.6.(a) Using theorem of componendo-dividendo find the value of: $\frac{x+2y}{x-2y} + \frac{x+2z}{x-2z}$ if $x = \frac{4yz}{y+z}$.

(1)

$$\frac{x + 2y}{x - 2y} = \frac{2z + y + z}{2z - y - z}$$

$$\frac{x + 2y}{x - 2y} = \frac{y + 3z}{z - y}$$

Similarly,

$$\frac{x}{2z} = \frac{2y}{y+z}$$

$$\frac{x+2z}{x-2z} = \frac{2y+y+z}{2y-y-z}$$

$$= \frac{3y+z}{y-z}$$

$$= -\left(\frac{3y+z}{z-y}\right)$$

$$\frac{x+2z}{x-2z} = \frac{-3y-z}{z-y}$$
(2)

From (1) and (2), we have

$$\frac{x + 2y}{x - 2y} + \frac{x + 2z}{x - 2z} = \frac{y + 3z}{z - y} + \frac{-3y - z}{z - y}$$

$$= \frac{y + 3z - 3y - z}{z - y}$$

$$= \frac{2z - 2y}{z - y}$$

$$= \frac{2(z - y)}{z - y}$$

$$= 2$$

(b) Resolve into partial fractions:
$$\frac{x-11}{(x-4)(x+3)}$$
. (4)

Solved Up-to-Date Papers 9	Mathematics 10th (Sc. Group)				
6	36				
8	64				
2	4				
Here, $\Sigma X = 75$, $\Sigma X^2 = 631$, $n = 10$					
Variance = $S^2 = \frac{\Sigma X^2}{n} - \left(\frac{\Sigma X}{n}\right)^2$					
$= \frac{631}{10} - \left(\frac{75}{10}\right)^2$					
= 63.1 - 56.25					
$S^2 = 6.85$					
R (a) Prove that: sin A (ta	$tan \theta + cot \theta$ = $sec \theta$ (4)				

Ans L.H.S =
$$\sin \theta (\tan \theta + \cot \theta)$$

= $\sin \theta \left(\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} \right)$
= $\sin \theta \left(\frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta} \right)$
= $\sin \theta \left(\frac{1}{\cos \theta \sin \theta} \right)$
= $\frac{1}{\cos \theta}$
= $\sec \theta$
= R.H.S Prove

Proved

Draw two perpendicular tangents to a circle of (b) radius 3 cm.

Step of Construction:

Steps:

Take a point O.

Take O as centre and draw circle of radius 3 cm. 2.

Take AOB any diameter of the circle. 3.

Draw m / BOC = 90°, m / AOC = 90° 4.

Draw tangents at point A, C. These are CP, AQ. Result:

AQ, CP are required tangents at point D at 90°.

Q.9. Prove that if two chords of a circle are congruent then they will be equidistant from the centre. (4)

Ans

Given:

AB and CD are two equal chords of a circle with centre at O.

So that OH \bot AB and OK \bot CD.

To prove:

mOH = mOK

Construction:

Join O with A and O with C. So that we have ∠rt∆s OAH and OCK. Proof:

Proof: Statements	Reasons
OH bisects chord AB	OH L AB By Theorem 3
i.e., $m\overline{AH} = \frac{1}{2} m\overline{AB}$ (i)	
Similarly OK bisects chord CD	ŌK⊥CD By Theorem 3
i.e., $m\overline{CK} = \frac{1}{2} m\overline{CD}$ (ii)	
But $m\overline{AB} = m\overline{CD}$ (iii)	Given
Hence $m\overline{AH} = m\overline{CK}$ (iv)	Using (i), (ii) & (iii)
Now in ∠rt ∆s OAH ↔ OCK	Given $\overline{OH} \perp \overline{AB}$ and $\overline{OK} \perp \overline{CD}$
hyp \overline{OA} = hyp \overline{OC}	Radii of the same circle
$m\overline{AH} = \overline{CK}$	Already proved in (iv)
∴ ∆OAH ≅ ∆OCK	H.S postulate
\Rightarrow mOH = mOK	

OR

Prove that the measure of a central angle of a minor arc of a circle, is double that of the angle subtended by the corresponding major erc.

Ans

Given:

Ac is an arc of a circle with center O. Whereas ∠AOC is the central angle and ∠ABC is circumangle.

To prove:

m/AOC = 2m/ABC

Construction:

Join B with O and produce it to meet the circle at D. Write angles \(\angle 1, \angle 2, \angle 3, \angle 4, \angle 5 and \angle 6 as shown in the figure.

Proof:

Statements

 $m \angle 1 = m \angle 3$ As

 $m \angle 2 = m \angle 4$ and

Now $m \angle 5 = m \angle 1 + m \angle 3$ (iii)

Similarly,

 $M\angle 6 = m\angle 2 + m\angle 4$ (iv)

Again

 $M \angle 5 = m \angle 3 + m \angle 3 = 2m \angle 3 (v)$ And

 $m \angle 6 = m \angle 4 + m \angle 4 = 2m \angle 4$ (vi)

 \Rightarrow m/5 + m/6 = 2m/3 + m/4

 \Rightarrow m \angle AOC = 2(m \angle 3 + m \angle 4) = 2m \(ABC

Reasons

Angles opposite to equal sides in ΔOAB .

Angles opposite to equal sides in ΔOBC .

External angle is the sum of internal opposite angles.

Using (i) and (iii)

Using (ii) and (iv) Adding (v) and (vi)