	V200000000	12	Mathematics 10th (Sc. Group)		
TIPS	Solved Up-to-Date Papers	温 14	otor of a circle is how many		
8-	114 41763 (BECARES			
	The length of the times of times the radius of	(b)	3 times		
	(a) 4 times		1 time		
	(C) Z lillies v				
9-	If $\frac{a}{b} = \frac{c}{d}$, then comp	oner	Ido bloberrà is.		
	(a) $\frac{a}{a+b} = \frac{c}{c+d} \sqrt{a}$	(b)	$\frac{a}{a-b} = \frac{c}{c-d}$		
	(c) ad bc	(d)	$\frac{a-b}{b} = \frac{c-d}{d}$		
10-	A circle has only on	e_			
	(a) Secant		Chord		
	(c) Diameter	(d)	Centre 1 ho drawn for two		
11-	How many common	n tai	ngents can be drawn for two		
	touching circles:	(L)			
	(a) 1	(b)			
	(c) 3 1/	(d)			
12-	If A ⊆ B then A ∩ B				
	(a) A 1	(b)			
	(c) ø		AUB		
13-	The discriminant of $ax^2 + bx + c = 0$ is:				
	(a) $b^2 - 4ac 1$	(b)	$b^2 + 4ac$		
	(c) $-b^2 + 4ac$	(d)	$-b^2-4ac$		
14-	A fraction in which the degree of numerator is less than the degree of the denominator is called:				
	(a) An equation	(b)	An improper fraction		
	(c) An identity		A proper fraction 1		
15-	Product of cube roots of unity is:				
	(a) 0		1 1		
	(c) -1	(d)			

10th Class 2018							
Math (Science)	Group-II	PAPER-II					
	(Subjective Type)	Max. Marks: 60					

(Part-I)

2. Write short answers to any SIX (6) questions: 12

(i) Write the quadratic equation $\frac{x}{x+1} + \frac{x+1}{x} = 6$.

Ans Given,

$$\frac{x}{x+1} + \frac{x+1}{x} = 6$$

$$\frac{x(x) + (x+1)(x+1)}{(x+1)(x)} = 6$$

$$\frac{x^2 + (x+1)^2}{x^2 + x} = 6$$

$$x^2 + x^2 + 1 + 2x = 6(x^2 + x)$$

$$2x^2 + 2x + 1 = 6x^2 + 6x$$

$$0 = 6x^2 + 6x - 2x^2 - 2x - 1$$

$$0 = 4x^2 + 4x - 1$$

$$4x^2 + 4x - 1 = 0$$
 Ans

 $\Rightarrow \qquad \qquad \boxed{4x^2 + 4x - 1 = 0} \quad \text{Ans}$ (II) Write the standard quadratic equation

(ii) Write the standard quadratic equation and also write quadratic formula to solve it.

The standard quadratic equation is:

$$ax^2 + bx + c = 0$$

Quadratic formula to solve it

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(iii) Find the sum and product of the roots of the equation $2px^2 + 3qx - 4r = 0$ without solving.

Given, $2px^2 + 3qx - 4r = 0$ Here, a = 2p, b = 3q, c = -4r

Sum of the roots =
$$\frac{-b}{a}$$

= $\frac{-3q}{2p}$
Product of the roots = $\frac{c}{a}$
= $\frac{-4r}{2p}$
 $\frac{-2r}{2p}$

(iv) Form a quadratic equation whose roots are $3 + \sqrt{2}$

and
$$3-\sqrt{2}$$
.

Here, $\alpha = 3+\sqrt{2}$

$$\beta = 3-\sqrt{2}$$

Sum of the roots = $\alpha + \beta$ = $(3 + \sqrt{2}) + (3 - \sqrt{2})$ = $3 + \sqrt{2} + 3 - \sqrt{2}$ = 6

Product of the roots =
$$\alpha\beta$$

= $(3 + \sqrt{2})(3 - \sqrt{2})$
= $(3)^2 - (\sqrt{2})^2$
= $9 - 2$
= 7

To find quadratic equation,

$$x^2 - Sx + P = 0$$

By putting the values, we get the required quadratic equations:

$$x^2 - 6x + 7 = 0$$

(v) Evaluate:
$$(1 - 3\omega - 2\omega^2)^5$$

Ans $(1 - 3\omega - 3\omega^2)^5 = [1 - 3(\omega + \omega^2)]^5$
 $= [1 - 3(-1)]^5$ $\therefore \omega + \omega^2 = -1$
 $= (1 + 3)^5$
 $= 4^5$
 $= 1024$

Define synthetic division.

Synthetic division is the process of finding the quotient and remainder, when a polynomial is divided by a linear polynomial. In fact, synthetic division is simply a short-cut of long division method.

Find p, if 12, p and 3 are in continued proportion. (vii)

Since 12, p and 3 are in continued proportion.

:.
$$12:p:p:3$$

i.e., $(p)(p) = (12)(3)$
 $p^2 = 36$

Thus, $p = \pm 6$

Find the ratio x: y, if 3(4x - 5y) = 2x - 7y.

Ans Given,

$$3(4x - 5y) = 2x - 7y$$

$$12x - 15y = 2x - 7y$$

$$12x - 2x = -7y + 15y$$

$$10x = 8y$$

$$\Rightarrow \frac{x}{y} = \frac{8}{10}$$

$$\frac{x}{y} = \frac{4}{5}$$

$$x: y = 4:5 \text{ Ans.}$$

(ix) Find a fourth proportional to 5, 8, 15.

Let a fourth proportional is x; So.

5:8::15:x

Product of Extremes = Product of Means

$$5(x) = 8 \times 15$$

 $x = \frac{8 \times 15}{5}$
 $x = 8 \times 3$
 $x = 24$

So, the fourth proportional is x = 24.

Write short answers to any SIX (6) questions: 12

What is an improper fraction?

Ans A rational fraction $\frac{N(x)}{D(x)}$, with $D(x) \neq 0$ is called an improper fraction if degree of the polynomial N(x) is greater or equal to the degree of the polynomial D(x).

For example:

ample:
$$\frac{5x}{5x} = \frac{3x^2 + 2}{5x^2 + 7x + 12}, \frac{6x^4}{x^3 + 1}$$

Find partial fraction of (x + 1)(x - 1)(ii)

$$\frac{3}{(x+1)(x-1)} = \frac{A}{x+1} + \frac{B}{x-1}$$
 (i)

By multiplying (x + 1)(x - 1), we get

$$\frac{3}{(x+1)(x-1)}(x+1)(x-1) = \frac{A}{(x+1)}(x+1)(x-1) +$$

$$\frac{B}{(x-1)}(x+1)(x-1)$$

$$3 = A(x-1) + B(x+1)$$
 (ii)

x - 1 = 0As, x = 1

Put
$$x = 1$$
 in (ii),

$$3 = A(1-1) + B(1+1)$$

$$3 = A(0) + 2B$$

$$3 = 2B$$

$$\frac{3}{2} = B$$

$$\Rightarrow B = \frac{3}{2}$$

And
$$x + 1 = 0$$

$$x = -1$$

Put
$$x = -1$$
 in (ii),

$$3 = A(-1 - 1) + B(-1 + 1)$$

By comparing, we get

2a + 5 = 7

2a = 7 - 5

3 = b - 4

7 = b

b = 7

2a = 2

Firstly,

And

Define an onto function.

Ans A function $f: A \rightarrow B$ is called an onto function, if every element of set B is an image of at least one element of set A i.e., Range of f = B.

Define a frequency distribution.

Ans A frequency distribution is a tabular arrangement for classifying data into different groups and the number of observations falling in each group corresponds to the respective group.

Find arithmetic mean by direct method: 200, 225, 350, 375, 270, 320, 290.

The arithmetic Mean:

$$\bar{X} = \frac{\Sigma X}{n} \\
= \frac{200 + 225 + 350 + 375 + 270 + 320 + 290}{7} \\
= \frac{2030}{7}$$

$$\bar{X} = 290$$

For the following data, find the harmonic mean: (ix)

Ans

X	1 X
12	0.0833
5	0.2
8	0.125
4	0.25
	0.6583

H.M =
$$\frac{n}{1} = \frac{4}{0.6583}$$

 $\Sigma(\frac{1}{x})$

H.M = 6.0763

Write short answers to any SIX (6) questions: 12

Verify the identity: $(1 - \sin \theta)(1 + \sin \theta) = \cos^2 \theta$ Given,

$$(1 - \sin \theta)(1 + \sin \theta) = \cos^2 \theta$$
L.H.S = (1 - sin θ)(1 + sin θ)
= (1)² - (sin θ)²
= 1 - sin² θ
= (sin² θ + cos² θ) - sin² θ
= sin² θ + cos² θ - sin² θ
= cos² θ
= R.H.S

How many minutes are there in two right angles? (ii)

As we know that:

1 degree = 60 minutes Two right angles have 180 degrees Thus

Two right angles = 180×60 minutes = 10,800 minutes

Find 'r', when l = 52 cm, $\theta = 45^{\circ}$. (iii)

Ans As we know that,

$$\theta = 45 \times \frac{\pi}{180} = \frac{\pi}{4}$$

$$r = \frac{l}{\theta}$$

$$= l \div \theta$$

$$= 52 \div \frac{\pi}{4}$$

$$= 52 \times \frac{4}{\pi}$$

$$= 52 \times 1.273$$

$$r = 66.21$$

$$r = 66.21$$

What is meant by zero dimension?

The projection of a finite line on another line is the portion of the latter intercepted between the projection of ends of the given finite line. However, projection of a vertical line on another line is the join of these two interesting lines, which is of zero dimension.

Define circumference.

The length of the boundary of the circle is called the circumference.

Define secant. (vi)

A secant is a straight line which cuts circumference of a circle in two distinct points.

Define chord of a circle.

The join of any two points on the circumference of the circle is called its chord.

Define cyclic quadrilateral.

Ans A quadrilateral is called cyclic when a circle can be drawn through its four vertices.

Define an arc.

A part of circumference of a circle is called an arc.

(Part-II)

NOTE: Attempt THREE (3) questions in all. But question No. 9 is Compulsory.

Q.5.(a) Solve the equation:

$$5x^{1/2} = 7x^{1/4} - 2$$

Ans Let

$$x^{1/4} = y$$

 $(x^{1/4})^2 = (y)^2$
 $x^{1/2} = y^2$

By putting the values in the given expression, we get

$$5(y^{2}) = 7(y) - 2$$

$$5y^{2} = 7y - 2$$

$$5y^{2} - 7y + 2 = 0$$

$$5y^{2} - 5y - 2y + 2 = 0$$

$$5y(y - 1) - 2(y - 1) = 0$$

$$(5y-2)(y-1)=0$$

 $5y-2=0$:

$$y-1=0$$

$$y=1$$

$$y = \frac{2}{5}$$

$$y = x^{1/4}$$

So,
$$x^{1/4} = 1$$

$$x^{1/4} = \frac{2}{5}$$

Taking square on both sides

Taking square on both sides

$$(x^{1/4})^2 = (1)^2$$

$$(x^{1/4})^2 = \left(\frac{2}{5}\right)^2$$

$$x^{1/2} = 1$$

$$x^{1/2} = \frac{4}{25}$$

Again taking square; on both sides

Again taking square on both sides

$$(x^{1/2})^2 = (1)^2$$

$$(x^{1/2})^2 = \left(\frac{4}{25}\right)^2$$

$$x = 1$$

$$x = \frac{16}{625}$$

$$S.S = \left\{1, \frac{16}{625}\right\}$$

(b) Find the value of h using synthetic division, if 3 is the zero of the polynomial $2x^3 - 3hx^2 + 9$.

Ans As 3 is the zero of the polynomial $2x^3 - 3hx^2 + 9$.

$$P(x) = 2x^3 - 3hx^2 + 9$$
$$= 2x^3 - 3hx^2 + 0x + 9$$

$$= 2x^3 - 3hx^2 + 0x + 9$$

And a = 3

So,

As 3 is the zero of polynomial, then R = 0

(4)

Resolve into partial fractions:

 $(x^2 - 1)(x + 1)$

$$\frac{1}{(x^2 - 1)(x + 1)} = \frac{1}{(x - 1)(x + 1)(x + 1)}$$

$$= \frac{1}{(x + 1)^2(x - 1)}$$

So,

$$\frac{1}{(x+1)^2(x-1)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-1}$$
 (i)

By multiplying $(x + 1)^2(x - 1)$, we get

$$1 = A(x + 1)(x - 1) + B(x - 1) + C(x + 1)^{2}$$
 (ii)

$$1 = A(x^2 - 1) + B(x - 1) + C(x^2 + 2x + 1)$$
 (iii)

Put x + 1 = 0, i.e., x = -1 in (ii), $1 = A((-1)^2 - 1) + B(-1 - 1) + C((-1)^2 + 2(-1) + 1)$ 1 = A(0) + B(-1 - 1) + C(0) 1 = B(-1 - 1)

$$B=\frac{-1}{2}$$

Put x-1=0, i.e., x=1 in (ii), $1=C(1+1)^2$ $1=C(2)^2$ 1=4C

$$\Rightarrow \boxed{C = \frac{1}{4}}$$

By comparison the coefficients of x2 in (iii), 0 = A + C

Put the value of C.

$$0 = A + \frac{1}{4}$$

$$\Rightarrow \boxed{A = \frac{-1}{4}}$$

Put the values of A, B, C in (i),

$$R = -27h + 63 = 0$$

$$-27h = -63$$

$$h = \frac{-63}{-27}$$

$$h = \frac{7}{3}$$

Q.6.(a) Using componendo-dividendo theorem, solve

the equation
$$\frac{\sqrt{x+3} + \sqrt{x-3}}{\sqrt{x+3} - \sqrt{x-3}} = \frac{4}{3}$$
. (4)

Given equation is $\frac{\sqrt{x+3} + \sqrt{x-3}}{\sqrt{x+3} - \sqrt{x-3}} = \frac{4}{3}$ By using componendo-dividendo theorem,

By using componendo-dividende and a solution
$$\frac{\sqrt{x+3} + \sqrt{x-3} + \sqrt{x+3} - \sqrt{x-3}}{\sqrt{x+3} + \sqrt{x-3} - \sqrt{x+3} + \sqrt{x-3}} = \frac{4+3}{4-3}$$

$$\frac{2\sqrt{x+3}}{2\sqrt{x-3}} = \frac{7}{1}$$

$$\sqrt{\frac{x+3}{x-3}} = 7$$

Squaring both sides, we get

$$\frac{x+3}{x-3} = 49$$

$$x + 3 = 49(x - 3)$$

$$x + 3 = 49(x - 3)$$

$$x + 3 = 49x - 147$$

$$x - 49x = -147 - 3$$

$$-48x = -150$$

$$48x = 150$$

$$x = \frac{150}{48}$$

$$x = \frac{25}{48}$$

$$x = \frac{25}{9}$$

 $B = \{1, 4, 7, 10\}$ then verify that $B - A = B \cap A'$. (4)

-H.S = B - A $= \{1, 4, 7, 10\} - \{1, 3, 5, 7, 9\}$ $= \{4, 10\}$ R.H.S = B \cap A' Now A' = U - A = {1, 2, 3, 4,, 10} - {1, 3, 5, 7, 9} = {2, 4, 6, 8, 10} R.H.S = B \cap A' $= \{1, 4, 7, 10\} \cap \{2, 4, 6, 8, 10\}$ = {4, 10} So. L.H.S = R.H.S

(4)Calculate variance for the data: (b)

10, 8, 9, 7, 5, 12, 8, 6, 8, 2

$$\bar{X} = \frac{\Sigma X}{n} \\
= \frac{10 + 8 + 9 + 7 + 5 + 12 + 8 + 6 + 8 + 2}{10} \\
= \frac{75}{10}$$

$$\overline{X} = 7.5$$
 $X \times - \overline{X} \times (x - \overline{X})^2$
 $10 \quad 2.5 \quad 6.25$
 $8 \quad 0.5 \quad 0.25$
 $9 \quad 1.5 \quad 2.25$
 $7 \quad -0.5 \quad 0.25$

-2.56.25 20.25

S Solved Up-to-Date Pape	rs 141	Mathematics 10t	h (Sc. Group)
8682	0.5 -1.5 -0.5 -5.5	0.25 2.25 0.25 30.25 68.5	

Variance (x) =
$$\frac{\Sigma(x - \overline{X})^2}{n}$$

= $\frac{68.5}{10}$
Var (x) = 6.85

Q.8.(a) Verify:
$$(\tan \theta + \cot \theta) \tan \theta = \sec^2 \theta$$
. (4)

Ans L.H.S =
$$(\tan \theta + \cot \theta) \tan \theta$$

= $\tan \theta \tan \theta + \tan \theta \cot \theta$
= $\tan^2 \theta + \frac{\sin \theta}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta}$
= $\frac{\sin^2 \theta}{\cos^2 \theta} + 1$
= $\frac{\sin^2 \theta + \cos^2 \theta}{\cos^2 \theta}$
= $\frac{1}{\cos^2 \theta}$
= $\sec^2 \theta$

= R.H.S

(b) Draw two equal circles of each radius 2.4 cm. If the distance between their centres is 6 cm, then draw their transverse tangents? (4)

Solved Up-to-Date Papers

Steps of Construction:

Draw a line segment mOO' = 6 cm.

Draw two circles of 2.4 cm radius on O and O'.

Take M as the mid-point of OO' and N as the mid-3.

point of MO'.

Draw a circle with centre at N and a radius NO'. This circle intersects the circle AA'.

Join A' with M and produce towards M, it touch the

second circle at B'.

Join A with M and produce towards M. AM produced 6. touches the second circle at B. So, A'B' are the required tangents.

Q.9. Prove that a straight line, drawn from the centre of a circle to bisect a chord (which is not a diameter) is perpendicular to the chord.

For Answer see Paper 2015 (Group-II), Q.9.

OR

Prove that the measure of a central angle of a minor arc of a circle is double that of the angle subtended by the corresponding major arc.

For Answer see Paper 2017 (Group-I), Q.9.(OR).