10th Class 2017

Math (Science)	Group-II	PAPER-II		
Matin (30 Minutes	(Objective Type)	Max. Marks: 15		

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

- The solution set of equation $4x^2 16 = 0$ is:

- (c) $\{\pm 2\}$ $\sqrt{}$
- Cube roots of -1 are:
 - (a) -1, $-\omega$, $-\omega^2 \sqrt{(b)} -1$, ω , $-\omega^2$

 - (c) $-1, -\omega, \omega^2$ (d) $1, -\omega, -\omega^2$
- If α , β are the roots of $x^2 x 1 = 0$, then product of the roots 2a and 2B is:
 - (a) -2

(b) 2

(c) 4

- (d) -4 V
- Find x in proportion 4:x::5:15:
 - (a) $\frac{75}{4}$

(b) $\frac{4}{3}$

(c) $\frac{3}{4}$

- (d) 12 $\sqrt{}$
- The third proportional of x2 and y2 is:
 - (a) $\frac{y^2}{x^2}$

(b) x^2y^2

(c) $\frac{y^4}{x^2} \sqrt{ }$

- $(d) \frac{y^2}{x^4}$
- The set having only one element is called:
 - (a) Null set
- (b) Power set
- (c) Singleton set 1/ (d) Subset

	NIN	Mathematics Tuth (Sc. Group)
TIPS	Solved Up-to-Date Papers	ber of ways to describe a set is:
7-	The different num	ber or way
	(a) 1	(0)
	(c) 2	(d) 4
8-	(C) Z If A \subseteq B, then A -	B is equal to.
	(a) A	$(D) \Psi V$
		(d) B-A (d) b-A hetween two extreme
9-	The extent of	variation between two extreme data set is measured by:
	observations of a	(b) Average
	(a) Range 1	(d) Median
	(c) Quartiles	(a) Mcaiai
10-	$\frac{3\pi}{4} \text{ radian} =:$	
		(b) 150°
	(a) 115° (c) 30°	(d) 135° 1/
11-	(C) SU The distance of a	any point of the circle to its centre is
	called:	
	(a) Diameter	(b) A chord
	(c) Radius 1	(d) An arc
12-		at the ends of diameter of a circle
	are to each ot	her.
	(a) Parallel 1	(b) Non-parallel
	(c) Collinear	(d) Perpendicular
13-	$\sec^2\theta = \cdots$:	
	(a) $1 - \sin^2 \theta$	(b) $1 + \tan^2 \theta \sqrt{}$
14-	(c) $1 + \cos^2 \theta$	(d) $1 - \tan^2 \theta$
14-	is called:	circle between two radii and an arc
	(a) Sector $\sqrt{}$	
	(c) Chord	(b) Segment
15-		(d) Diameter
	touching circles:	non tangents can be drawn for two
	(a) 2	(b) 1
	(c) 4	(d) 3 1/
		\", \", \", \", \", \", \", \", \", \",

- 4

10th	Class	2017
IULII	UI a33	2011

Math (Science)	Group-II	PAPER-II	
Time: 2.10 Hours	(Subjective Type)	Max. Marks: 60	

(Part-I)

Write short answers to any SIX (6) questions: 12

Define radical equation.

An equation involving expression under the radical sign is called a radical equation.

(ii) Write the equation in standard form:

$$\frac{x}{x+1} + \frac{x+1}{x} = 6$$

Aus Multiplying both sides by x(x + 1)

$$x(x + 1) \frac{x}{x + 1} + x(x + 1) \frac{x + 1}{x} = 6x(x + 1)$$

$$x(x) + (x + 1)(x + 1) = 6x(x) + 6x(1)$$

$$x^{2} + x^{2} + 1 + 2x = 6x^{2} + 6x$$

$$2x^{2} + 2x + 1 = 6x^{2} + 6x$$

$$0 = 6x^{2} + 6x - 2x^{2} - 2x - 1$$

$$0 = 4x^{2} + 4x - 1$$

$$\Rightarrow 4x^{2} + 4x - 1 = 0$$

(iii) Define simultaneous equations.

A system of equations having a common solution is called a system of simultaneous equations.

(iv) Evaluate:
$$(9 + 4\omega + 4\omega^2)^3$$

Ans Given, $(9 + 4\omega + 4\omega^2)^3$
 $= (9 + 4(\omega + \omega^2))^3$
 $= (9 + 4(-1))^3$
 $= (9 - 4)^3$
 $= 5^3$
 $= 125$

TIPS Solved Up-to-Date Papers 98 Without solving, find the sum and the product of the roots of quadratic equation: (v)

of quadratic or
$$(l + m) x^2 + (m + n) x + n - l = 0$$

Ans Here: a = l + m, b = m + n, c = n - lLet α , β be the roots of equation: Sum of the roots:

$$S = \alpha + \beta = \frac{-b}{a} = -\frac{m+n}{l+m}$$

Product of the roots:

$$P = \alpha \beta = \frac{c}{a} = \frac{n-l}{l+m}$$

Use synthetic division to find the quotient and the (vi) remainder, when $(x^2 + 7x - 1) \div (x + 1)$.

Ans Let,
$$P(x) = x^2 + 7x - 1$$

Here, $x - a = x + 1$
 $x - x - 1 = a$
 \Rightarrow $a = -1$

By synthetic division

The depressed equation is

$$x + 6 = 0$$

$$\therefore \quad \text{Quotient} = Q(x) = x + 6$$

$$\quad \text{and Remainder} = -7$$

Define direct variation.

Ans If two quantities are related in such a way that increase (decrease) in one quantity causes increase (decrease) in the other quantity, then this variation is called direct variation.

Find fourth proportional: $4x^4$, $2x^3$, $18x^5$ Ans Let y be the fourth proportional, then

4x4:2x3::18x5:y

Product of extremes = Product of means

$$(4x^4) y = (2x^3)(18x^5)$$

 $y = \frac{(2x^3)(18x^5)}{4x^4}$

$$y = 9x^4$$

If 3(4x - 5y) = 2x - 7y, find the ratio x : y.

(ix)

$$3(4x - 5y) = 2x - 7y$$

$$12x - 15y = 2x - 7y$$

$$12x - 2x = -7y + 15y$$

$$10x = 8y$$

$$\frac{x}{y} = \frac{8}{10}$$

$$\frac{x}{y} = \frac{4}{5}$$

x: y = 4:5

3. Write short answers to any SIX (6) questions: 12

(i) Define a rational fraction.

Ans An expression of the form $\frac{N(x)}{D(x)}$, where N(x) and D(x) are polynomial in x with real coefficients and $D(x) \neq 0$, is called a rational fraction.

(ii) How can we make partial fractions of $\frac{7x-9}{(x+1)(x-3)}$.

Ans Let

$$\frac{7x-9}{(x+1)(x-3)} = \frac{A}{(x+1)} + \frac{B}{(x-3)}$$
 (i)

Multiplying by (x + 1)(x - 3), we get

$$7x - 9 = A(x - 3) + B(x + 1)$$

$$7x - 9 = Ax - 3A + Bx + B$$

$$7x - 9 = Ax + Bx - 3A + B$$

$$7x - 9 = (A + B)x - 3A + B$$

By comparing coefficients of x and constant terms

(ii)

(iii)

$$A + B = 7$$

 $-3A + B = -9$

By subtracting (iii) from (ii), gives

$$A + B = 7$$

 $-3A + B = -9$

$$4A = 16$$
 $A = \frac{16}{4}$

$$A = 4$$
Put $A = 4$ in (ii)

$$A = 4 = 0$$
 $A = 7$
 $A = 7$

By putting values of A, B in (i), we get

$$\frac{7x-9}{(x+1)(x-3)} = \frac{4}{(x+1)} + \frac{3}{(x+3)}$$

(iii) Define complement of a set.

If U is a universal set and A is subset of U, then the complement of A is the set of those elements of U which are not contained in A and is denoted by A^c or A'.

(iv) Find a and b if (a - 4, b - 2) = (2, 1).

Ans

$$a-4=2$$
; $b-2=1$
 $a=2+4$; $b=1+2$
 $a=6$: $b=3$

(v) Define domain and range of a relation.

Ans Domain:

Domain of relation denoted by DomR is the set consisting of all the first elements of each ordered pair in the relation.

Range:

Range of relation denoted by range R is the set consisting of all the second elements of each ordered pair in the relation.

Find A \cap B if A = {2, 3, 5, 7} and B = {3, 5, 8}.

Ans
$$A \cap B = \{2, 3, 5, 7\} \cap \{3, 5, 8\}$$

= $\{3, 5\}$

The marks of seven students in Mathematics are as (vii) follows. Find Arithmetic Mean: 45, 60, 74, 58, 65, 63, 49.

The Arithmetic Mean: (X)

$$\bar{X} = \frac{\Sigma X}{n}$$
=\frac{45 + 60 + 74 + 58 + 65 + 63 + 49}{7}
=\frac{414}{7}

$$\bar{X} = 59.14$$

Find geometric mean of 2, 4 and 8. (viii)

G.M =
$$(2 \times 4 \times 8)^{1/3}$$

= $(64)^{1/3}$
= $(4^3)^{1/3}$
= 4

Define mode. (ix)

Ans Mode is defined as the most frequent occurring observation in the data.

Write short answers to any SIX (6) questions: 12

Define radian. (i)

The angle subtended at centre of the circle by an arc, whose length is equal to the radius of the circle is called one radian.

Express 225° into radian. (ii)

Ans
$$225^{\circ} = 225 \times \frac{\pi}{180}$$
$$= \frac{5\pi}{4} \text{ radians}$$

Solved Up-to-Date Papers 102

In a circle of radius 12 m, find the length of an arc which subtends a central angle θ = 1.5 radian. (iii)

Ans

$$r = 12 \text{ m}$$

 $\theta = 1.5 \text{ radian}$
 $l = ?$
 $l = r\theta$
 $= (12)(1.5)$
 $l = 18 \text{ m}$

Define projection of a point. (iv)

The projection of a given point on a line segment is the foot of perpendicular drawn from the point on that line segment.

Define radial segment.

Radical segment of a circle is a line segment, determined by the centre and a point on a circle.

Define the tangent to a circle.

A tangent to a circle is the straight line which touches the circumference at a single point only.

Define sector of a circle.

The circular region bounded by an arc of a circle and its two corresponding radical segments is called a sector of a circle.

(viii) Define central angle.

The angle subtended by an arc at the centre of a circle is called its central angle.

Define geometry. (ix)

Ans Geometry is an important branch of mathematics, which deals with the shape, size and position of geometric figures.

(Part-II)

NOTE: Attempt THREE (3) questions in all. But question No. 9 is Compulsory.

Q.5.(a) Solve the equation: $2x + 5 = \sqrt{7}x + 16$ Ans Given equation:

$$2x + 5 = \sqrt{7x + 16}$$

Taking square on both sides,

$$(2x + 5)^{2} = (\sqrt{7x + 16})^{2}$$

$$(2x)^{2} + (5)^{2} + 2(2x)(5) = 7x + 16$$

$$4x^{2} + 25 + 20x = 7x + 16$$

$$4x^{2} + 20x + 25 - 7x - 16 = 0$$

$$4x^{2} + 13x + 9 = 0$$

$$4x^{2} + 4x + 9x + 9 = 0$$

$$4x(x + 1) + 9(x + 1) = 0$$

$$(x + 1)(4x + 9) = 0$$

$$x + 1 = 0$$

$$x + 1 = 0$$

$$4x = -9$$

$$x = \frac{-9}{4}$$

(b) Use synthetic division to find the values of l and m, if (x + 3) and (x - 2) are the factors of the polynomial $x^3 + 4x^2 + 2lx + m$. (4)

Ans Here
$$P(x) = x^3 + 4x^2 + 2lx + m$$

and $x - a = x + 3$

Since -3 is zero of polynomial, so remainder equal to zero. -6l + m + 9 = 0 (1)

Again,

$$x-a=x-2$$

$$-a=-2$$

$$a=2$$

Again using synthetic division,

	1	4	21	m
2		2	12	41 + 24
	1	6	21 + 12	41 + m + 24

TIPS Solved Up-to-Date Papers 104 Mathematics 10th (Sc. Group) Since 2 is zero of the polynomial, so remainder equal

By solving equation (1) and equation (2), -6l + m + 9 = 0 +4l + m + 24 = 0to zero.

$$-61 + m + 9 = 0$$

 $-41 + m + 24 = 0$

$$-\frac{10l - 15 = 0}{-10l = 15}$$

$$-1 = \frac{15}{10}$$

$$l = \frac{-3}{2}$$

 $l = \frac{-3}{2}$ in equation (1), we get

$$-6\left(\frac{-3}{2}\right) + m + 9 = 0$$

$$9 + m + 9 = 0$$

$$m + 18 = 0$$

Thus $l = \frac{-3}{2}$, m = -18

Q.6.(a) If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$ (a, b, c, d, e, f, \neq 0), then show that

$$\frac{a}{b} = \sqrt{\frac{a^2 + c^2 + e^2}{b^2 + d^2 + f^2}}.$$
 (4)

 $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = K$

$$\frac{a}{b} = K$$
, $\frac{c}{d} = K$, $\frac{e}{f} = K$
 $a = bK$, $c = dK$, $e = fK$

$$R.H.S = \sqrt{\frac{a^{2} + c^{2} + e^{2}}{b^{2} + d^{2} + f^{2}}}$$

$$= \sqrt{\frac{(bK)^{2} + (dK)^{2} + (fK)^{2}}{b^{2} + d^{2} + f^{2}}}$$

$$= \sqrt{\frac{b^{2}K^{2} + d^{2}K^{2} + f^{2}K^{2}}{b^{2} + d^{2} + f^{2}}}}$$

$$= \sqrt{\frac{K^{2}(b^{2} + d^{2} + f^{2})}{b^{2} + d^{2} + f^{2}}}}$$

$$= \sqrt{K^{2} = K}$$
From (1) and (2),

L.H.S = R.H.S

i.e.,
$$\frac{a}{b} = \sqrt{\frac{a^{2} + c^{2} + e^{2}}{b^{2} + d^{2} + f^{2}}}$$
Proved

(b) Resolve into partial fractions: $\frac{x-11}{(x-4)(x+3)}$ (4)

Ans
$$\frac{x-11}{(x-4)(x+3)} = \frac{A}{x-4} + \frac{B}{x+3}$$

 $x-11 = A(x+3) + B(x-4)$
Put $x = 4$, $x = -3$ in (i)
Firstly,
 $4-11 = A(4+3) + B(4-4)$
 $-7 = A(7) + 0$
 $\Rightarrow 7A = -7$
 $A = -1$

And
$$-3 - 11 = A(-3 + 3) + B(-3 - 4)$$

$$-14 = 0 + B(-7)$$

$$\Rightarrow -7B = -14$$

$$B = 2$$

So,

$$\frac{x-11}{(x-4)(x+3)} = \frac{-1}{x-4} + \frac{2}{x+3}$$

Solved Up-to-Date Papers [100]
$$A = \{1, 3, 5, 7, 9\}, B = \{1, 0, 7, 10\}$$
 then prove that $A = \{1, 3, 5, 7, 9\}, A = \{1, 3, 7, 10\}$ then prove that $A = \{1, 3, 5, 7, 9\}, A = \{1, 3, 7, 10\}$ then prove that $A = \{1, 3, 5, 7, 9\}, A = \{1, 3, 5, 7, 9\}, B = \{1, 3, 7, 10\}$ then prove that $A = \{1, 3, 5, 7, 9\}, B = \{1, 3, 7, 10\}$ then prove that $A = \{1, 3, 5, 7, 9\}, B = \{1, 3, 7, 10\}$

L.H.S = B - A
=
$$\{1, 4, 7, 10\} - \{1, 3, 5, 7, 9\}$$

= $\{4, 10\}$ (1)

Now,

$$A' = U - A$$

= $\{1, 2, 3, 4, ---, 10\} - \{1, 3, 5, 7, 9\}$
= $\{2, 4, 6, 8, 10\}$

and

R.H.S = B
$$\cap$$
A'
= {1, 4, 7, 10} \cap {2, 4, 6, 8, 10}
= {4, 10} (2)

From equation (1) and equation (2),

$$L.H.S = R.H.S$$

 $B - A = B \cap A'$

(b) The marks of six students in mathematics are as follows. Determine variance: (4)

Students	1	2	3	4	5	6
Marks	60	70	30	90	80	42

Ans

X	X ²
60	3600
70	4900
30	900
90	8100
80	6400
42	1764
372	25664

Variance =
$$S^2 = \frac{\Sigma X^2}{n} - \left(\frac{\Sigma X}{n}\right)^2$$

TIPS Solved Up-to-Date Papers

107

Mathematics 10th (Sc. Group)

$$= \frac{25664}{6} - \left(\frac{372}{6}\right)^2$$

$$= 4277.33 - (62)^2$$

$$= 4277.33 - 3844$$

$$S^2 = 433.33$$

Q.8.(a) Prove that: $\frac{1+\sin\theta}{1-\sin\theta} - \frac{1-\sin\theta}{1+\sin\theta} = 4\tan\theta \sec\theta.$

(4)

 $L.H.S = \frac{1 + \sin \theta}{1 - \sin \theta} - \frac{1 - \sin \theta}{1 + \sin \theta}$ $= \frac{(1 + \sin \theta)^2 - (1 - \sin \theta)^2}{(1 - \sin \theta)(1 + \sin \theta)}$ $-\frac{(1 + \sin^2 \theta + 2 \sin \theta)}{-(1 + \sin^2 \theta - 2 \sin \theta)}$ $(1)^2 - (\sin \theta)^2$ $1 + \sin^2 \theta + 2 \sin \theta - 1 - \sin^2 \theta + 2 \sin \theta$ $1 - \sin^2 \theta$ $4 \sin \theta$ $\cos^2 \theta$ $= 4 \frac{\sin \theta}{\cos \theta} \cdot \frac{1}{\cos \theta}$ = $4 \tan \theta \sec \theta$ = R.H.S

Inscribe a circle in an equilateral triangle ABC (b) with each side of length 5 cm.

Ans

Steps of Construction:

- Draw a AABC with each side = 5 cm.
- Draw AA' bisector of ∠A. (ii)
- Draw BE bisecter of ∠B. (iii) AA' and BE intersect at point O.
- Drop OM 1 AB.
- Take O as centre and draw a circle with mOM as (v)radius. This is inscribed circle to triangle ABC.
- Q.9. Prove that two chords of a circle which are equidistant from the centre, are congruent.

Ans

Given:

AB and CD are two chords of a circle with center O.

 $\overline{OH} \perp \overline{AB}$ and $\overline{OK} \perp \overline{CD}$, so that $\overline{mOH} = \overline{mOK}$. To prove:

mAB = mCD

Construction:

Join A and C with O, so that we can form ∠rt Δs OAH and OCK.

proof:

Statements

In Zrt As OAH ++ OCK

hyp. OA = hyp. OC

mOH = mOK $\Delta OAH \cong \Delta OCK$

So

 $m\overline{AH} = m\overline{CK}$ (i)

But

 $m\overline{AH} = \frac{1}{2}m\overline{AB}$ (ii)

Similarly,

 $m\overline{CK} = \frac{1}{2}m\overline{CD}$ (iii)

Since $m\overline{AH} = m\overline{CK}$

 $\frac{1}{2} \text{ mAB} = \frac{1}{2} \text{ mCD}$

or

 $\overline{mAB} = \overline{mCD}$

Reasons

Radii of the same circle

Given

H.S postulate

Corresponding sides of congruent triangles

OH ⊥ chord AB (Given)

OK _ chord CD Given

Already proved in (i)

Using (ii) and (iii)

OR

Prove that the opposite angles of any quadrilateral inscribed in a circle are supplementary.

Ans

Given:

ABCD is a quadrilateral inscribed in a circle with centre O.

To prove:

mZA + mZC = 2 Zrts m/B + m/D = 2 /rts

Construction:

Draw OA and OC. Write ∠1, ∠2, ∠3, ∠4, ∠5, and ∠6 as shown in the tiqure.

Statements

ADC, Z2 is a central angle. Whereas \(\mathbb{B} \) is the circumangle

:
$$m\angle B = \frac{1}{2}(m\angle 2)$$
 (i)

Standing on the same arc ABC, 24 is a central angle whereas ∠D is the circumangle

..
$$m\angle D = \frac{1}{2} (m\angle 4)$$
 (ii) By theorem 1

$$\Rightarrow$$
 m/B + m/D = $\frac{1}{2}$ m/2

$$+\frac{1}{2}$$
 m/4

$$=\frac{1}{2}(m/2 + m/4) = \frac{1}{2}$$

(Total central angle)

i.e.,
$$m\angle B + m\angle D = \frac{1}{2}(4 \angle rt)$$

$$=2\angle rt$$

Similarly, m∠A + m∠C = 2∠rt

Reasons

Standing on the same arc | Arc ADC of the circle with centre O.

By theorem 1

Arc ABC of the circle with centre O.

Adding (i) and (ii)